SBT TOÁN TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 18 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1, 2, ..., 45, chẳng hạn bạn Bình chọn bộ số {4, 12, 20, 31, 32, 33}. Sau đó, người quản trò bốc thăm ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1, 2, ..., 45. Bộ 6 số ghi trên 6 quả bóng đó, gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với 4 số của bộ số trúng thưởng thì người chơi trúng giải nhì. Tính xác suất bạn Bình trúng giải nhì khi chơi.

Lời giải chi tiết

Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1,2,..., 44, 45}

\(n(\Omega ) = C_{45}^6 = 8145000\)

Gọi E là biến cố: “Bạn Bình trúng giải nhi”.

 E là tập hợp tất cả các tập con gồm sáu phần tử của tập {1; 2; 3; ...; 45} có tính chất:

- Bốn phần tử của nó thuộc tập {4; 12, 20, 31, 32, 33}

- Hai phần tử còn lại không thuộc tập {4; 12; 20, 31, 32, 33}.

Chọn 4 phần tử trong tập {4; 12, 20, 31, 32, 33}. Có \(C_6^4 = 15\) cách

Chọn 2 phần tử còn lại trong 39 phần tử của tập {1; 2; ..., 44, 45} \{4; 12, 20, 31, 32, 33} có  \(C_{39}^2 = 741\) cách.

 Tập E có 15 . 741=11 115 phần tử.

Vậy xác suất bạn Bình trúng giải nhì khi chơi là: \(P(E) = \frac{{11115}}{{8145000}} = 0,00136\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved