1. Nội dung câu hỏi
Tính đạo hàm của mỗi hàm số sau:
a) \(f\left( x \right) = 2\cos \left( {\sqrt x } \right);\)
b) \(g\left( x \right) = \tan \left( {{x^2}} \right);\)
c) \(h\left( x \right) = {\rm{co}}{{\rm{s}}^2}\left( {3x} \right) - {\rm{si}}{{\rm{n}}^2}\left( {3x} \right);\)
d) \(k\left( x \right) = {\sin ^2}\left( x \right) + {e^x}.\sqrt x .\)
2. Phương pháp giải
Sử dụng các quy tắc tính đạo hàm của hàm hợp.
3. Lời giải chi tiết
a) \({f'}\left( x \right) = {\left( {2\cos \left( {\sqrt x } \right)} \right)^\prime } = 2{\left( {\sqrt x } \right)^\prime }.\left( { - \sin \left( {\sqrt x } \right)} \right) = \frac{2}{{2\sqrt x }}.\left( { - \sin \left( {\sqrt x } \right)} \right) = \frac{{ - \sin \left( {\sqrt x } \right)}}{{\sqrt x }}.\)
b) \(g'\left( x \right) = {\left( {\tan \left( {{x^2}} \right)} \right)^\prime } = \frac{{{{\left( {{x^2}} \right)}^\prime }}}{{{{\cos }^2}\left( {{x^2}} \right)}} = \frac{{2x}}{{{{\cos }^2}\left( {{x^2}} \right)}}.\)
c) Ta có: \(h\left( x \right) = {\rm{co}}{{\rm{s}}^2}\left( {3x} \right) - {\rm{si}}{{\rm{n}}^2}\left( {3x} \right) = \cos \left( {6x} \right).\)
\( \Rightarrow h'\left( x \right) = {\left( {\cos \left( {6x} \right)} \right)^\prime } = {\left( {6x} \right)^\prime }.\left( { - \sin \left( {6x} \right)} \right) = - 6\sin \left( {6x} \right).\)
d) \(k'\left( x \right) = {\left( {{{\sin }^2}\left( x \right)} \right)^\prime } + {\left( {{e^x}.\sqrt x } \right)^\prime } = 2\sin x{\left( {\sin x} \right)^\prime } + {\left( {{e^x}} \right)^\prime }.\sqrt x + {\left( {\sqrt x } \right)^\prime }.{e^x}\)
\( = 2\sin x\cos x + {e^x}.\sqrt x + \frac{{{e^x}}}{{2\sqrt x }}.\)
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Chương 4: Hydrocarbon
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11