PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1

Bài 19 trang 67 Vở bài tập toán 9 tập 1

Đề bài

Cho hai hàm số bậc nhất \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\)

Tìm điều kiện đối với m và k để đồ thị của hai hàm số là:

a) Hai đường thẳng cắt nhau.

b) Hai đường thẳng song song với nhau.

c) Hai đường thẳng trùng nhau.

Phương pháp giải - Xem chi tiết

- Tìm điều kiện để hàm số đã cho là hàm số bậc nhất.

- Vận dụng kiến thức: Hai đường thẳng \(y = ax + b\,\,\left( {a \ne 0} \right)\) và \(y = a'x + b'\,\,\left( {a' \ne 0} \right)\)

- Cắt nhau khi \(a \ne a'\)

- Song song với nhau khi \(a = a'\) và \(b \ne b'\)

- Trùng nhau khi \(a = a'\) và \(b = b'\).

Lời giải chi tiết

a) Do \(y = \left( {2m + 1} \right)x + 2k - 3\) là hàm số bậc nhất nên hệ số của x phải khác 0, nghĩa là \(2m + 1 \ne 0 \Leftrightarrow m \ne  - \dfrac{1}{2}\) .

Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) cắt nhau khi và chỉ khi: \(2m + 1 \ne 2 \Leftrightarrow m \ne \dfrac{1}{2}\)

Vậy điều kiện đối với m là : \(m \ne  - \dfrac{1}{2}\)  và \(m \ne \dfrac{1}{2}\) , \(k\) tùy ý.

b) Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) song song với nhau khi :

\(\left\{ \begin{array}{l}2m + 1 \ne 0\\2m + 1 = 2\\2k - 3 \ne 3k\end{array} \right.\)

\(2m + 1 \ne 0 \Leftrightarrow m \ne  - \dfrac{1}{2}\)

\(2m + 1 = 2 \Leftrightarrow m = \dfrac{1}{2}\)

\(2k - 3 \ne 3k \Leftrightarrow k \ne  - 3\)

Vậy hai đường thẳng đã cho song song với nhau khi \(m = \dfrac{1}{2}\) và \(k \ne  - 3\).

c) Hai đường thẳng \(y = 2x + 3k\) và \(y = \left( {2m + 1} \right)x + 2k - 3\) trùng nhau khi :

\(\left\{ \begin{array}{l}2m + 1 \ne 0\\2m + 1 = 2\\2k - 3 = 3k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ne  - \dfrac{1}{2}\\m = \dfrac{1}{2}\\k =  - 3\end{array} \right.\)

Vậy hai đường thẳng đã cho trùng nhau khi \(m = \dfrac{1}{2}\) và\(k =  - 3\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved