Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Rút gọn các phân thức:
LG a
LG a
\( \displaystyle{{{x^2} - 5} \over {x + \sqrt 5 }}\) (với \( x \ne - \sqrt 5 \))
Phương pháp giải:
Áp dụng:
\(A = {\left( {\sqrt A } \right)^2}\) (với \(A \ge 0\))
\({A^2} - {B^2} = (A - B)(A + B)\)
Lời giải chi tiết:
\( \displaystyle\eqalign{
& {{{x^2} - 5} \over {x + \sqrt 5 }} = {{{x^2} - {{\left( {\sqrt 5 } \right)}^2}} \over {x + \sqrt 5 }} \cr
& = {{\left( {x - \sqrt 5 } \right)\left( {x + \sqrt 5 } \right)} \over {x + \sqrt 5 }} = x - \sqrt 5 \cr} \)
(với \(x \ne - \sqrt 5 \)).
LG b
LG b
\( \displaystyle{{{x^2} + 2\sqrt 2 x + 2} \over {{x^2} - 2}}\) (với \(x \ne \pm \sqrt 2 \) )
Phương pháp giải:
Áp dụng:
\(A = {\left( {\sqrt A } \right)^2}\) (với \(A \ge 0\))
\({A^2} + 2AB + {B^2} = {(A + B)^2}\)
\({A^2} - {B^2} = (A - B)(A + B)\)
Lời giải chi tiết:
\( \displaystyle{{{x^2} + 2\sqrt 2 x + 2} \over {{x^2} - 2}}\)
\(\displaystyle = {{{x^2} + 2.x.\sqrt 2 + {{\left( {\sqrt 2 } \right)}^2}} \over {\left( {x + \sqrt 2 } \right)\left( {x - \sqrt 2 } \right)}} \)
\( = \dfrac{{{{\left( {x + \sqrt 2 } \right)}^2}}}{{\left( {x - \sqrt 2 } \right)\left( {x + \sqrt 2 } \right)}}\)
\(\displaystyle = {{x + \sqrt 2 } \over {x - \sqrt 2 }} \)
(với \(x \ne \pm \sqrt 2 \) ).
CHƯƠNG 4: SỰ BẢO TOÀN VÀ CHUYỂN HÓA NĂNG LƯỢNG
SBT tiếng Anh 9 mới tập 2
Bài 30. Thực hành: So sánh tình hình sản xuất cây công nghiệp lâu năm ở Trung du và Miền núi Bắc Bộ với Tây Nguyên
Tác giả - Tác phẩm học kì 2
Unit 10: Life On Other Planets - Sự sống trên các hành tinh khác