Câu hỏi 19 - Mục Bài tập trang 95

1. Nội dung câu hỏi

Cho tam giác nhọn có ba đường cao cắt nhau tại . Qua kẻ tia vuông góc với . Qua kẻ tia vuông góc với . Gọi là giao điểm của (Hình 15)

a)     Chứng minh tứ giác là hình bình hành;

b)    Tam giác có điều kiện gì thi ba điểm thẳng hàng?

c)     Tìm mối liên hệ giữa góc và góc của tứ giác .

d)    Giả sử là trung điểm của . Chứng minh diện tích của tam giác bằng diện tích của tứ giác .

 

2. Phương pháp giải 

Dựa vào dấu hiệu nhận biết của hình bình hành:

-         Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành

-         Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành

-         Tứ giác có hai cặp góc đối bằng nhau là hình bình hành

-         Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.

 

3. Lời giải chi tiết

a)     Ta có: nằm ở vị trí đồng vị nên .

Tương tự ta chứng minh được .

Tứ giác nên là hình bình hành.

b)    Để ba điểm thẳng hàng thì phải thuộc . Mà thuộc , suy ra là giao điểm của .

Do là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường. suy ra là trung điểm .

Khi đó (c.g.c). Suy ra .

Dễ thấy nếu tam giác thì ba điểm thẳng hàng.

Vậy tam giác cân tại thì thẳng hàng.

c)     Xét tứ giác , ta có: .

, suy ra tính được

Vậy góc và góc của tứ giác là hai góc bù nhau.

d)    Do là trung điểm của nên

Ta có diện tích tam giác bằng: .

Ta chứng minh được (c.c.c.). Suy ra diện tích tứ giác bằng 2 lần diện tích tam giác .

Do đó, diện tích tứ giác bằng: vạy diện tích tam giác bằng điệnt tích của tứ giác .

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận

Bài giải cùng chuyên mục

Câu hỏi 16 - Mục Bài tập trang 94 Câu hỏi 16 - Mục Bài tập trang 94
Câu hỏi 17 - Mục Bài tập trang 94 Câu hỏi 17 - Mục Bài tập trang 94
Câu hỏi 18 - Mục Bài tập trang 95 Câu hỏi 18 - Mục Bài tập trang 95
Câu hỏi 20 - Mục Bài tập trang 95 Câu hỏi 20 - Mục Bài tập trang 95
Xem thêm
Bạn có câu hỏi cần được giải đáp?
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi