1. Nội dung câu hỏi
Cho \(\cos \alpha = - \frac{2}{5}\) với \(\frac{\pi }{2} < \alpha < \pi \). Khi đó, \(\tan \alpha \) bằng:
A. \(\frac{{\sqrt {21} }}{5}\)
B. \( - \frac{{\sqrt {21} }}{2}\)
C. \(\frac{{\sqrt {21} }}{2}\)
D. \( - \frac{{\sqrt {21} }}{5}\)
2. Phương pháp giải
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \(\frac{\pi }{2} < \alpha < \pi \) để tính \(\sin \alpha \).
Sử dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\) để tính \(\tan \alpha \).
3. Lời giải chi tiết
Do \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( { - \frac{2}{5}} \right)^2} = \frac{{21}}{{25}} \Rightarrow \sin \alpha = \pm \frac{{\sqrt {21} }}{5}\).
Vì \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \sin \alpha > 0 \Rightarrow \sin \alpha = \frac{{\sqrt {21} }}{5}\).
Như vậy \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt {21} }}{5}:\frac{{ - 2}}{5} = - \frac{{\sqrt {21} }}{2}\).
Đáp án đúng là B.
Grammar Banksection
SGK Toán 11 - Chân trời sáng tạo tập 1
Grammar Expansion
Chuyên đề 1. Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
Chuyên đề 2: Trải nghiệm, thực hành hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11