Toán 7 tập 2 - Cánh diều

Giải bài 2 trang 107 SGK Toán 7 tập 2 - Cánh diều

Đề bài

Cho tam giác ABC cân tại A, hai đường trung tuyến BMCN cắt nhau tại G. Chứng minh:

a) BM = CN;                                                                    b) \(\Delta GBC\) cân tại G.

 

 

Phương pháp giải - Xem chi tiết

a) Chứng minh BM = CN bằng cách chứng minh tam giác ABM bằng tam giác ACN.

b) Chứng minh \(\Delta GBC\) cân tại G bằng cách chứng minh GB = GC.

 

 

Lời giải chi tiết

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BMCN nên G là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved