Đề bài
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lên (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
Giá trị | 0 | 4 | 6 | 9 | 10 | 17 |
Tần số | 1 | 3 | 5 | 4 | 2 | 1 |
b)
Giá trị | 2 | 23 | 24 | 25 | 26 | 27 |
Tần số | 1 | 6 | 8 | 9 | 4 | 2 |
Phương pháp giải - Xem chi tiết
Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)
Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.
Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)
Lời giải chi tiết
a)
+ Số cao nhất và thấp nhất lần lượt là 17 và 0 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 17 - 0 = 17\)
+ Mẫu có 16 số liệu
+ Tứ phân vị: \({Q_2} = \left( {6 + 6} \right):2 = 6\); \({Q_1} = \left( {4 + 6} \right):2 = 5;{Q_3} = 9 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 4\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 5 - 1,5.4 = - 1\) và \({Q_3} + 1,5.{\Delta _Q} = 9 + 1,5.4 = 15\) nên mẫu có 1 giá trị ngoại lệ là 17;
Trung bình của mẫu số liệu là \(\overline x = 7,18\)
Phương sai: \({S^2} = 13,40\)
b)
+ Số cao nhất và thấp nhất lần lượt là 27 và 2 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 27 - 2 = 25\)
+ Mẫu có 30 số liệu
+ Tứ phân vị: \({Q_2} = \left( {24 + 25} \right):2 = 24,5\); \({Q_1} = 24;{Q_3} = 25 \Rightarrow \Delta Q = {Q_3} - {Q_1} = 1\)
+ Ta có \({Q_1} - 1,5.{\Delta _Q} = 24 - 1,5.1 = 22,5\) và \({Q_3} + 1,5.{\Delta _Q} = 25 + 1,5.1 = 26,5\) nên mẫu có giá trị ngoại lệ là 2 và 27.
Trung bình của mẫu số liệu là \(\overline x = 23,83\)
Phương sai: \({S^2} = 17,74\)
Soạn Văn 10 Chân trời sáng tạo tập 2 - chi tiết
Hịch tướng sĩ
Cuộc tu bổ lại các giống vật
Review (Units 7 - 8)
Thơ duyên
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10