Đề bài
Khai triển các biểu thức sau:
a) \({\left( {x + 1} \right)^5}\)
b) \({\left( {x - 3y} \right)^5}\)
Phương pháp giải - Xem chi tiết
Sử dụng khai triển Nhị thức Newton với \(n = 5\):\({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
Lời giải chi tiết
a)
\({\left( {x + 1} \right)^5}\)= \({x^5} + 5.{x^4}.1 + 10.{x^3}{.1^2} + 10.{x^2}{.1^3} + 5.{x^1}{.1^4} +{1^5} = {x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1\)
b)
\(\begin{array}{l}{\left( {x - 3y} \right)^5} = {\left[ {x + \left( { - 3y} \right)} \right]^5}\\ = {x^5} + 5{x^4}{\left( { - 3y} \right)^1} + 10{x^3}{\left( { - 3y} \right)^2} + 10{x^2}{\left( { - 3y} \right)^3} + 5{x^1}{\left( { - 3y} \right)^4} + {\left( { - 3y} \right)^5}\\ = {x^5} - 15{x^4}y + 90{x^3}{y^2} - 270{x^2}{y^3} + 405x{y^4} - 243{y^5}\end{array}\)
Chủ đề 6: Tham gia xây dựng cộng đồng
Chủ đề 3: Giữ gìn truyền thống nhà trường
Review 2
Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton
Chương 10: Địa lí các ngành kinh tế
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10