Đề bài
Chứng minh rằng với mọi \(n \in \mathbb{N}*\):
a) \({3^n} - 1 - 2n\) chia hết cho 4.
b) \({7^n} - {4^n} - {3^n}\) chia hết cho 12.
Lời giải chi tiết
a) Ta chứng minh bằng phương pháp quy nạp
Với \(n = 1\) ta có \({3^1} - 1 - 2 = 0 \vdots 4\)
Vậy khẳng định đúng với \(n = 1\)
Giải sử khẳng định đúng với \(n = k\) tức là ta có \({3^k} - 1 - 2k\) chia hết cho 4
Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh \({3^{k + 1}} - 1 - 2(k + 1)\) chia hết cho 4
Sử dụng giả thiết quy nạp, ta có
\({3^{k + 1}} - 1 - 2(k + 1) = {3^{k + 1}} - 3 - 2k = 3.\left( {{3^k} - 1 - 2k} \right) + 4k\) chia hết cho 4.
Vậy khẳng định đúng với mọi \(n \in \mathbb{N}*\).
b) Ta chứng minh bằng phương pháp quy nạp
Với \(n = 1\) ta có \({7^1} - {4^1} - {3^1} = 0 \vdots 12\)
Vậy khẳng định đúng với \(n = 1\)
Giải sử khẳng định đúng với \(n = k\) tức là ta có \({7^k} - {4^k} - {3^k}\) chia hết cho 12
Ta chứng minh khẳng định đúng với \(n = k + 1\) tức là chứng minh \({7^{k + 1}} - {4^{k + 1}} - {3^{k + 1}}\) chia hết cho 12
Sử dụng giả thiết quy nạp, lưu ý \(k \ge 1\), ta có
\({7^{k + 1}} - {4^{k + 1}} - {3^{k + 1}} = {7.7^k} - {4.4^k} - {3.3^k} = 7\left( {{7^k} - {4^k} - {3^k}} \right) + {3.4^k} + {4.3^k}\) chia hết cho 12.
Vậy khẳng định đúng với mọi \(n \in \mathbb{N}*\).
Unit 3: Music
Chương 3. Các cuộc cách mạng công nghiệp trong lịch sử thế giới
Unit 3. Going Places
Grammar Builder
Test Yourself 4
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10