SBT Toán 11 - Chân trời sáng tạo tập 2

Câu hỏi 2 - Mục Bài tập trang 45

1. Nội dung câu hỏi

Cho hàm số \(f\left( x \right) = 2{x^3} - {x^2} + 2x + 1\) có đồ thị (C). Tìm tiếp tuyến với (C) có hệ số góc nhỏ nhất.


2. Phương pháp giải

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).

 

3. Lời giải chi tiết 

Gọi tiếp tuyến của đồ thị (C) là d và tiếp điểm là \(M\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Hệ số góc của d là:

\(f'\left( {{x_0}} \right) = 6x_0^2 - 2{x_0} + 2 = 6\left( {x_0^2 - \frac{1}{3}{x_0} + \frac{1}{3}} \right) = 6\left( {x_0^2 - 2.{x_0}.\frac{1}{6} + \frac{1}{{36}} + \frac{{11}}{{36}}} \right)\)\( = 6{\left( {{x_0} - \frac{1}{6}} \right)^2} + \frac{{11}}{6}\)

Ta có: \(6{\left( {{x_0} - \frac{1}{6}} \right)^2} + \frac{{11}}{6} \ge \frac{{11}}{6}\) nên \(f'\left( {{x_0}} \right) \ge \frac{{11}}{6}\)

Nên hệ số góc của tiếp tuyến đồ thị với (C) nhỏ nhất bằng \(\frac{{11}}{6}\) khi \({x_0} - \frac{1}{6} = 0 \Leftrightarrow {x_0} = \frac{1}{6}\).

Với \({x_0} = \frac{1}{6}\) thì \(f\left( {\frac{1}{6}} \right) = 2.{\left( {\frac{1}{6}} \right)^3} - {\left( {\frac{1}{6}} \right)^2} + 2.\frac{1}{6} + 1 = \frac{{71}}{{54}}\)

Do đó, tiếp tuyến d cần tìm là: \(y = f'\left( {\frac{1}{6}} \right)\left( {x - \frac{1}{6}} \right) + f\left( {\frac{1}{6}} \right) = \frac{{11}}{6}\left( {x - \frac{1}{6}} \right) + \frac{{71}}{{54}} = \frac{{11}}{6}x + \frac{{109}}{{108}}\)

Vậy tiếp tuyến cần tìm là: \(y = \frac{{11}}{6}x + \frac{{109}}{{108}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved