Đề bài
Trong mặt phẳng tọa độ Oxy, cho hypebol có phương trình chính tắc là \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
a) Xác định tọa độ các đỉnh, tiêu điểm, tiêu cự, độ dài trục thực của hypebol
b) Xác định phương trình các đường tiệm cận của hypebol và vẽ hypebol trên.
Phương pháp giải - Xem chi tiết
Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:
+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)
+ Các đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\)
+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}} \)
+ Độ dài trục thực: \(2a\), độ dài trục ảo: \(2b\)
+ Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{b}{a}x,y = \frac{b}{a}x\)
Lời giải chi tiết
a) Ta có: \(a = 2,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \)
+ Tọa độ các đỉnh của hypebol là \({A_1}\left( { - 2;0} \right),{A_2}\left( {2;0} \right)\)
+ Tọa độ các tiêu điểm của hypebol là \({F_1}( - \sqrt 5 ;0),{F_2}(\sqrt 5 ;0)\)
+ Tiêu cự của hypebol là \(2c = 2\sqrt 5 \)
+ Độ dài trục thực: \(2a = 4\), độ dài trục ảo: \(2b = 2\)
b) Ta có phương trình các đường tiệm cận của hypebol (H) lần lượt có phương trình \(y = - \frac{1}{2}x,y = \frac{1}{2}x\)
Vẽ hypebol (H):
Ta thấy \(a = 2,b = 1\). (H) có các đỉnh \({A_1}\left( { - 2;0} \right),{A_2}\left( {2;0} \right)\)
Bước 1: Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn thường thẳng \(x = - 2,x = 2,y = - 1,y = 1\)
Bước 2: Vẽ hai đường chéo của hình chữ nhật cơ sở
Tìm một số điểm cụ thể thuộc hypebol, chẳng hạn, ta thấy điểm \(M\left( {3;\frac{9}{4}} \right)\) thuộc (H) và điểm \({M_1}\left( {3; - \frac{9}{4}} \right),{M_2}\left( { - 3;\frac{9}{4}} \right),{M_3}\left( { - 3; - \frac{9}{4}} \right)\) thuộc (H)
Bước 3: Vẽ đường hypebol (H) bên ngoài hình chữ nhật cơ sở, nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_1}\left( { - 2;0} \right)\) và điểm \({M_2},{M_3}\); nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_2}\left( {2;0} \right)\) và điểm \(M,{M_1}\). Vẽ các điểm thuộc hypebol càng xa gốc tọa độ thì càng sát với đường tiệm cận. Hypebol nhận gốc tọa độ là tâm đối xứng và hai trục tọa độ là hai trục đối xứng.
Chương 6: Sinh quyển
Mở đầu
Unit 3: On screen
Chương 6. Năng lượng
Chương II. Một số nền văn minh thế giới thời kỉ cổ-trung đại
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10