Toán 7 tập 2 - Cánh diều

Giải bài 2 trang 63 SGK Toán 7 tập 2 - Cánh diều

Đề bài

Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức:

a) \(P(x) = ( - 2{x^2} - 3x + x - 1)(3{x^2} - x - 2)\);

b) \(Q(x) = ({x^5} - 5)( - 2{x^6} - {x^3} + 3)\).

 

 

Phương pháp giải - Xem chi tiết

Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích lại với nhau.

Ta thực hiện nhân đa thức với đa thức rồi tìm bậc (là số mũ cao nhất của biến trong đa thức), hệ số cao nhất (là hệ số đi cùng với số mũ cao nhất của biến), hệ số tự do (là hệ số không đi cùng với biến hoặc biến có số mũ bằng 0).

 

 

Lời giải chi tiết

a) \(\begin{array}{l}P(x) = ( - 2{x^2} - 3x + x - 1)(3{x^2} - x - 2) \\=  - 2{x^2}(3{x^2} - x - 2) - 3x(3{x^2} - x - 2) + x(3{x^2} - x - 2) - 1.(3{x^2} - x - 2)\\ =  - 6{x^4} + 2{x^3} + 4{x^2} - 9{x^3} + 3{x^2} + 6x + 3{x^3} - {x^2} - 2x - 3{x^2} + x + 2\\ =  - 6{x^4} - 4{x^3} + 3{x^2} + 5x + 2\end{array}\)

Bậc của đa thức là: 4.

Hệ số cao nhất của đa thức là: – 6.

Hệ số tự do của đa thức là: 2.

b)

\(\begin{array}{l}Q(x) = ({x^5} - 5)( - 2{x^6} - {x^3} + 3) \\= {x^5}( - 2{x^6} - {x^3} + 3) - 5( - 2{x^6} - {x^3} + 3) \\ =  - 2{x^{11}} - {x^8} + 3{x^5} + 10{x^6} + 6{x^3} - 15\\ =  - 2{x^{11}} - {x^8} + 10{x^6} + 3{x^5} + 6{x^3} - 15\end{array}\)

Bậc của đa thức là: 11.

Hệ số cao nhất của đa thức là: – 2.

Hệ số tự do của đa thức là: – 15. 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved