Toán 7 tập 2 - Chân trời sáng tạo

Giải bài 2 trang 66 SGK Toán 7 tập 2 - Chân trời sáng tạo

Đề bài

Cho tam giác ABC có \(\widehat A = \)\({100^0}\),\(\widehat B\)\( = {40^o}\).

a) Tìm cạnh lớn nhất của tam giác ABC.

b) Tam giác ABC là tam giác gì? Vì sao?

 

 

Phương pháp giải - Xem chi tiết

- Sử dụng định lí quan hệ cạnh và góc đối diện trong tam giác.

- Sử dụng dấu hiệu nhận biêt tam giác cân.

 

 

Lời giải chi tiết

a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.

\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)

b) 

Theo định lí tổng 3 góc trong tam giác ABC, ta có:

\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)

 \( \Rightarrow\widehat C = \widehat B = {40^o}\)

\( \Rightarrow \) ABC là tam giác cân tại A.

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved