Đề bài
Xác định giá trị của m để các đa thức sau là tam thức bậc hai
a) \(\left( {m + 1} \right){x^2} + 2x + m\)
b) \(m{x^3} + 2{x^2} - x + m\)
c) \( - 5{x^2} + 2x - m + 1\)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định \(a\) là hệ số của \({x^2}\)
Bước 2: Đa thức \(a{x^2} + bx + c\)được gọi là tam thức bậc hai khi \(a \ne 0\)
Lời giải chi tiết
a) Ta có: \(a = m + 1\)
Để đa thức \(\left( {m + 1} \right){x^2} + 2x + m\) là tam thức bậc hai khi và chỉ khi \(m + 1 \ne 0\)
\( \Leftrightarrow m \ne - 1\)
Vậy khi \(m \ne - 1\) thì đa thức \(\left( {m + 1} \right){x^2} + 2x + m\)là tam thức bậc hai
b) Ta có: \(a = 2\)
Để đa thức \(m{x^3} + 2{x^2} - x + m\) là tam thức bậc hai khi và chỉ khi \(m = 0\)
Vậy khi \(m = 0\) thì đa thức \(m{x^3} + 2{x^2} - x + m\)là tam thức bậc hai
c) Ta có \(a = - 5\)
Hệ số c không ảnh hưởng đến tam thức bậc hai
Vậy đa thức \( - 5{x^2} + 2x - m + 1\) là tam thức bậc hai với mọi m
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Địa lí lớp 10
Đề thi giữa kì 1
Chương 2. Trái Đất
Chương 3. Trao đổi chất và chuyển hóa năng lượng ở tế bào
Chương 5. Thủy quyển
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10