PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 20 trang 9 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Tìm \(a\) và \(b:\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Để đường thẳng \(y = ax + b\) đi qua hai điểm \(A (-5; 3)\), \(B\displaystyle\left( {{3 \over 2}; - 1} \right)\);

Phương pháp giải:

Sử dụng:

- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).

- Cách giải hệ phương trình bằng phương pháp thế:

+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

- Hai đường thẳng \(({d_1})\):  \(ax + by = c\) và \(({d_2})\):  \(a'x+b'y = c'\) cắt nhau tại điểm \(M\)  thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x+b'y = c'} \cr} } \right.\)

Lời giải chi tiết:

Vì  \(A(-5; 3)\) thuộc đường thẳng \(y = ax + b\) nên tọa độ của \(A\) thỏa mãn phương trình này, nghĩa là \(3 = -5a + b.\)

Vì \(B\displaystyle\left( {{3 \over 2}; - 1} \right)\) thuộc đường thẳng \(y = ax + b\) nên \( - 1 = \displaystyle{3 \over 2}a + b \Leftrightarrow 3a + 2b =  - 2\)

Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - 5a + b = 3} \cr 
{3a + 2b = - 2} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr 
{3a + 2\left( {3 + 5a} \right) = - 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr 
{3a +6+10a= - 2} \cr} } \right.\cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr 
{13a = - 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 3 + 5a} \cr 
{a = \displaystyle- {8 \over {13}}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = \displaystyle- {1 \over {13}}} \cr 
{a = \displaystyle- {8 \over {13}}} \cr} } \right. \cr} \)

Vậy \(a =  \displaystyle- {8 \over {13}};b =  - {1 \over {13}}.\) 

LG b

LG b

Để đường thẳng \(ax - 8y = b\) đi qua điểm \(M (9; -6)\) và đi qua giao điểm của hai đường thẳng \(({d_1})\):  \(2x + 5y = 17,\)

 \(({d_2})\): \(4x - 10y = 14\)

Phương pháp giải:

Sử dụng:

- Đường thẳng \(ax+by=c\) đi qua điểm \(M(x_0;y_0)\) \( \Leftrightarrow ax_0+by_0=c\).

- Cách giải hệ phương trình bằng phương pháp thế:

+ Bước \(1\): Rút \(x\) hoặc \(y\) từ một phương trình của hệ phương trình, thay vào phương trình còn lại, ta được phương trình mới chỉ còn một ẩn.

+ Bước \(2\): Giải phương trình một ẩn vừa có, rồi từ đó suy ra nghiệm của hệ phương trình đã cho.

- Hai đường thẳng \(({d_1})\):  \(ax + by = c\) và \(({d_2})\):  \(a'x+b'y = c'\) cắt nhau tại điểm \(M\)  thì tọa độ của \(M\) là nghiệm của hệ phương trình: \(\left\{ {\matrix{
{ax + by = c} \cr 
{a'x+b'y = c'} \cr} } \right.\)

Lời giải chi tiết:

Tọa độ giao điểm của hai đường thẳng \(({d_1})\): \(2x + 5y = 17,\) 

\(({d_2})\):  \(4x - 10y = 14\) 

là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{2x + 5y = 17} \cr 
{4x - 10y = 14} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2x + 5y = 17} \cr 
{2x - 5y = 7} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{7 + 5y} \over 2}} \cr 
{ \displaystyle 2\left( {{{7 + 5y} \over 2}} \right) + 5y = 17} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \displaystyle {{7 + 5y} \over 2}} \cr 
{10y = 10} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x =  \displaystyle{{7 + 5y} \over 2}} \cr 
{y = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 6} \cr 
{y = 1} \cr} } \right. \cr} \)

Do đó giao điểm của \(({d_1})\) và\(({d_2})\) là  \(C(6; 1).\)

Vì \(M(9; -6)\) thuộc đường thẳng \(ax – 8y = b\) nên \(9a + 48 = b\)

Vì \(C(6; 1)\) thuộc đường thẳng \(ax – 8y = b\) nên \(6a – 8 = b\)

Khi đó \(a\) và \(b\) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{9a + 48 = b} \cr 
{6a - 8 = b} \cr} } \right. \cr& \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr 
{9a + 48 = 6a - 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr 
{3a = - 56} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{b = 6a - 8} \cr 
{a = \displaystyle - {{56} \over 3}} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{b = - 120} \cr 
{a = \displaystyle - {{56} \over 3}} \cr} } \right. \cr} \)

Vậy \(a =   \displaystyle - {{56} \over 3};b =  - 120\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved