Bài 2.1 trang 46 SBT hình học 12

Đề bài

Một hình nón tròn xoay có đỉnh là \(D\), tâm của đường tròn đáy là \(O\), đường sinh bằng \(l\) và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha \).

a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên.

b) Gọi \(I\) là một điểm trên đường cao \(DO\) của hình nón sao cho \(\dfrac{{DI}}{{DO}} = k(0 < k < l)\). Tính diện tích thiết diện qua \(I\) và vuông góc với trục của hình nón.

Phương pháp giải - Xem chi tiết

a) Áp dụng các công thức: \({S_{xq}} = \pi rl\) và \(V = \dfrac{1}{3}\pi {r^2}h\).

b) Xác định tâm và bán kính của thiết diện (hình tròn), tính diện tích theo công thức \(S = \pi {R^2}\).

Lời giải chi tiết

 

a) Gọi \(r \) là bán kính của đường tròn đáy.

Ta có \(OA{\rm{ }} = {\rm{ }}r{\rm{ }} = l.\cos \alpha \) (với \(O\) là tâm của đường tròn đáy và \(A\) là một điểm trên đường tròn đó).

Ta suy ra: \({S_{xq}} = \pi rl = \pi {l^2}\cos \alpha \)

Khối nón có chiều cao \(h = DO = l\sin \alpha \). Do đó thể tích \(V\) của khối nón được tính theo công thức  \(V = \dfrac{1}{3}Bh = \dfrac{1}{3}\pi {r^2}.h\)

Vậy : \(V = \dfrac{1}{3}\pi {l^2}{\cos ^2}\alpha .l\sin \alpha  = \dfrac{1}{3}\pi {l^3}{\cos ^2}\alpha \sin \alpha \)

b) Thiết diện qua \(I\) và vuông góc với trục hình nón là một hình tròn bán kính \(r’\) với \(\dfrac{{r'}}{r} = \dfrac{{DI}}{{DO}} = k\)\( \Rightarrow r' = kr = k.l\cos \alpha \).

Vậy diện tích của thiết diện đi qua điểm \(I\) và vuông góc với trục hình nón là: \(S = \pi r{'^2} = \pi {k^2}{l^2}{\cos ^2}\alpha \)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved