Đề bài
Chứng minh rằng với mọi số tự nhiên \(n \ge 1\), ta có:
\({2.2^1} + {3.2^2} + {4.2^3} + ... + (n + 1){.2^n} = n{.2^{n + 1}}\)
Phương pháp giải - Xem chi tiết
Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
Ta chứng minh (*) \({2.2^1} + {3.2^2} + {4.2^3} + ... + (n + 1){.2^n} = n{.2^{n + 1}}\) bằng PP quy nạp.
Với \(n = 1\) ta có \({2.2^1} = {1.2^{1 + 1}}\)
Vậy (*) đúng với \(n = 1\)
Giải sử (*) đúng với \(n = k\) tức là ta có \({2.2^1} + {3.2^2} + {4.2^3} + ... + (k + 1){.2^k} = k{.2^{k + 1}}\)
Ta chứng minh (*) đúng với \(n = k + 1\)
tức là chứng minh \({2.2^1} + {3.2^2} + {4.2^3} + ... + (k + 1){.2^k} + (k + 2){.2^{k + 1}} = (k + 1){.2^{k + 2}}\)
Thật vậy, ta có
\(\begin{array}{l}{2.2^1} + {3.2^2} + {4.2^3} + ... + (k + 1){.2^k} + (k + 2){.2^{k + 1}}\\ = k{.2^{k + 1}} + (k + 2){.2^{k + 1}} = (2k + 2){.2^{k + 1}}\\ = 2(k + 1){.2^{k + 1}} = (k + 1){.2^{k + 2}}\end{array}\)
Vậy (*) đúng với mọi số tự nhiên \(n \ge 1.\)
Unit 5: Gender Equality
Chủ đề 3: Tư duy phản biện và tư duy tích cực
Chủ đề 3: Đạo đức, pháp luật và văn hóa trong môi trường số
Chủ đề 5. Chuyển động tròn và biến dạng
Chương 1. Sử dụng bản đồ
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10