PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài II.2 phần bài tập bổ sung trang 166 SBT toán 8 tập 1

Đề bài

Cho lục giác \(ABCDEF,\) có \(AB = BC\) \(= 3\, cm\) và\( ED = 4 \,cm.\) Biết rằng \(ED\) song song với \(AB,\, AB\) vuông góc với \(BC, \,FE\) vuông góc với \(FA\) và \(FE = FA.\) Qua điểm \(A\) kẻ đường thẳng \(d\) song song với \(BC.\) Gọi \(K\) là giao điểm của \(d\) và \(ED,\) biết \(AK = 4\,cm,\, KD = 1\,cm.\) Tính diện tích của lục giác đó.

Phương pháp giải - Xem chi tiết

Chia lục giác đã cho thành các hình thang, hình tam giác. Sau đó lần lượt tính diện tich hình thang và hình tam giác đã chia rồi tính diện tích hình lục giác đã cho của bài toán.

Lời giải chi tiết

 

Gọi \(H\) là giao điểm của hai đường thẳng \(ED\) và \(BC.\) Khi đó, \(ABHE\) là hình thang và diện tích hình thang \(ABHE\) là: \(S_1=\dfrac{1}{2}(AB+EH).BH\) \(= \dfrac{1}{2} (3+6).4=18\ (cm^2)\)

Diện tích tam giác vuông \(DHC\) là: \(S_2=\dfrac{1}{2} DH.HC\) \(=\dfrac{1}{2}.2.1=1\,(cm^2)\)

Trong tam giác vuông \(AKE\), theo định lý Pytago ta có:

\(A{E^2} = K{E^2} + K{A^2} \)\(= {3^2} + {4^2} = 25\)

Suy ra \(EA=5\,(cm)\)

Trong tam giác vuông \(FEA\) có \(FE=FA\) nên theo định lý Pytago ta có: 

\(F{E^2} + F{A^2} = E{A^2} \Leftrightarrow 2F{E^2} = 25\)

\(\Leftrightarrow  FE^2=\dfrac{25}{2}\)

Từ đó diện tích của tam giác \(FEA\) là: \(S_3= \dfrac{1}{2}.FA.FE = \dfrac{1}{2}F{E^2} \)\(= \dfrac{1}{2}.\dfrac{{25}}{2}=\dfrac{25}{4}\,(cm^2)\)

Vậy diện tích của lục giác đã cho là: \(S=S_1+S_3-S_2\) \(= 18+\dfrac{25}{4}-1=\dfrac{93}{4}\) \((cm^2)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved