Đề bài
Chứng minh rằng
\(C_{2n}^0 + C_{2n}^2 + C_{2n}^4... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5... + C_{2n}^{2n - 1}\)
Áp dụng: Tìm số nguyên dương n thỏa mãn \(C_{2n}^1 + C_{2n}^3 + C_{2n}^5... + C_{2n}^{2n - 1} = 2048\)
Lời giải chi tiết
Ta có:
\({(1 + x)^{2n}} = C_{2n}^0 + C_{2n}^1x + C_{2n}^2{x^2} + ... + C_{2n}^{2n}{x^{2n}}\) (1)
Thay \(x = 1\) vào hai vế của (1), ta suy ra
\(C_{2n}^0 + C_{2n}^1 + C_{2n}^2 + ... + C_{2n}^{2n} = {2^{2n}}\)
Thay \(x = - 1\) vào hai vế của (1), ta suy ra
\(C_{2n}^0 - C_{2n}^1 + C_{2n}^2 - ... + C_{2n}^{2n} = 0\)
\(\begin{array}{l} \Leftrightarrow C_{2n}^0 + C_{2n}^2 + C_{2n}^4... + C_{2n}^{2n} = C_{2n}^1 + C_{2n}^3 + C_{2n}^5... + C_{2n}^{2n - 1}\\ \Rightarrow 2\left( {C_{2n}^1 + C_{2n}^3 + C_{2n}^5... + C_{2n}^{2n - 1}} \right) = {2^{2n}}\\ \Leftrightarrow C_{2n}^1 + C_{2n}^3 + C_{2n}^5... + C_{2n}^{2n - 1} = {2^{2n - 1}}\\ \Leftrightarrow 2048 = {2^{2n - 1}}\\ \Leftrightarrow {2^{11}}= {2^{2n - 1}}\\ \Leftrightarrow n = 6\end{array}\)
Thu hứng
Phần 2. Địa lí tự nhiên
Chủ đề 9. Pháp luật nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn hóa dân gian
Đề thi học kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10