Đề bài
Trong mặt phẳng (α) , cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng (α) đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.
a) Chứng minh rằng khi quay mặt phẳng (α) xung quanh trục AB có một mặt nón tròn xoay và một mặt cầu được tạo thành. Hãy xác định các mặt tròn xoay đó.
b) Chứng minh rằng giao tuyến của hai mặt tròn xoay đó là một đường tròn. Hãy xác định bán kính của đường tròn đó.
c) So sánh diện tích toàn phần của hình nón và diện tích của mặt cầu nói trên.
Phương pháp giải - Xem chi tiết
a) Tam giác vuông khi quay cạnh huyền quanh một cạnh góc vuông sẽ tạo thành một mặt nón.
Nửa đường tròn khi quay quanh đường kính sẽ tạo thành một mặt cầu.
b) Xác định giao điểm của cạnh BC với nửa đường tròn, từ đó suy ra giao tuyến và tính bán kính của đường tròn giao tuyến đó.
c) Sử dụng các công thức:
- Diện tích toàn phần hình nón: .
- Diện tích mặt cầu.
Lời giải chi tiết
a) Tam giác vuông ABC có BC = 2a và AC = a nên ta suy ra .
Khi quay xung quanh trục AB cạnh BC tạo nên mặt nón tròn xoay có góc ở đỉnh bằng 600 và có đường tròn đáy có bán kính AC = a.
Khi xoay xung quanh trục AB nửa đường tròn đường kính AB tạo nên mặt cầu có tâm là trung điểm I của đoạn AB và bán kính .
b) Khi quay xung quanh trục AB, giao điểm M của nửa đường tròn đường kính AB và cạnh CD sẽ tạo nên giao tuyến của mặt nón và mặt cầu.
Vẽ .
Ta có:
Mặt khác ta có CA2 = CM. CB nên ta có
Do đó và
c) Gọi S1 là diện tích toàn phần của hình nón và S2 là diện tích mặt cầu.
Ta có:
Vậy S1 = S2
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Địa lí lớp 12
Đề thi thử THPT QG
Chương 2. Tính quy luật của hiện tượng di truyền
PHẦN 2. KĨ THUẬT ĐIỆN
Bài 15. Bảo vệ môi trường và phòng chống thiên tai