Bài 2.28 trang 62 SBT hình học 12

Đề bài

Cho hai đường thẳng Δ và Δ′ chéo nhau nhận AA’ làm đoạn vuông góc chung, trong đó A thuộc   và A’ thuộc Δ′  . Gọi (P) là mặt phẳng qua A vuông góc với Δ  và d là hình chiếu vuông góc của Δ  trên mặt phẳng (P). Đặt  AA’ = a, góc nhọn giữa Δ  và d là α. Mặt phẳng (Q) song song với mặt phẳng (P) cắt Δ và Δ′ lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).

a) Chứng minh 5 điểm A, A’ , M, M’ , M1 cùng nằm trên  mặt cầu (S). xác định tâm O của (S). Tính bán kính của (S) theo a, α và khoảng cách x giữa hai mặt phẳng (P) và (Q).

b) Khi x thay đổi, tâm O của mặt cầu (S) di động trên đường nào? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định.

Phương pháp giải - Xem chi tiết

Chứng minh các điểm A, A', M cùng nhìn đoạn thẳng M′M1 một góc .

Lời giải chi tiết

1614781912432.png

 

a) Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc Δ mà d là hình chiếu vuông góc của Δ trên (P) nên M1 thuộc d.

Vì 

Mặt khác nên ta suy ra . Do đó    và điểm A thuộc mặt cầu đường kính M’M1.

Ta có    nên , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính  M’M1

Ta có  (Q) // (P) nên ta suy ra    mà MM’ thuộc (Q), do đó 

Như vậy 5 điểm A, A’ , M, M’, M1 cùng thuộc mặt cầu (S) có đường kính M’M1. Tâm O của mặt cầu (S) là trung điểm của đoạn M’M1.

Ta có   vì M= x và 

Bán kính r của mặt cầu (S) bằng   nên 

b) Hình tứ giác A’M’MM1 là hình chữ nhật nên tâm O cũng là trung điểm của A’M.

Do đó khi x thay đổi thì mặt phẳng (Q) thay đổi và điểm O luôn luôn thuộc đường thẳng d’ đi qua trung điểm I của đoạn AA’ và song song với đường thẳng Δ.

Vì mặt cầu tâm O luôn luôn đi qua hai điểm cố định A, A’nên nó có tâm O di động trên đường thẳng d’.

Do đó mặt cầu tâm O luôn luôn chứa đường tròn tâm I cố định có đường kính AA’ cố định và nằm trong mặt phẳng cố định vuông góc với đường thẳng d’.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận

Bài giải cùng chuyên mục

Bài 2.26 trang 62 SBT hình học 12 Giải bài 2.26 trang 62 sách bài tập hình học 12. Cho hình chóp S.ABC và biết rằng có một mặt cầu tiếp xúc với tất cả các cạnh bên của hình chóp đồng thời tiếp xúc với ba cạnh của đáy tại trung điểm của mỗi cạnh đáy. Chứng minh hình chóp đó là hình chóp đều.
Bài 2.27 trang 62 SBT hình học 12 Giải bài 2.27 trang 62 sách bài tập hình học 12. Trong mặt phẳng a, cho tam giác ABC vuông tại A có cạnh AC = a và có cạnh huyền BC = 2a. Cũng trong mặt phẳng đó cho nửa đường tròn đường kính AB cắt cạnh BC tại M.
Bài 2.28 trang 62 SBT hình học 12 Giải bài 2.28 trang 62 sách bài tập hình học 12. Mặt phẳng (Q) song song với mặt phẳng (P) cắt ∆ và ∆' lần lượt tại M và M’. Gọi M1 là hình chiếu vuông góc của M lên mặt phẳng (P).
Bài 2.29 trang 63 SBT hình học 12 Giải bài 2.29 trang 63 sách bài tập hình học 12. Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC.
Bài 2.30 trang 63 SBT hình học 12 Giải bài 2.30 trang 63 sách bài tập hình học 12. Cho đường tròn tâm O bán kính r’. Xét hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy, S và A cố định, SA = h cho trước và có đáy ABCD là một tứ giác tùy ý nội tiếp đường tròn đã cho, trong đó các đường chéo AC và BD vuông góc với nhau.
Xem thêm
logo footer
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
app store ch play
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi