HÌNH HỌC SBT - TOÁN 11

Bài 2.29 trang 77 SBT hình học 11

Đề bài

Cho ba mặt phẳng \(\left( \alpha  \right),\left( \beta  \right),\left( \gamma  \right)\) song song với nhau. Hai đường thẳng \(a\) và \(a’\) cắt ba mặt phẳng ấy theo thứ tự nói trên tại \(A\), \(B\), \(C\) và \(A’\), \(B’\), \(C’\). Cho \(AB = 5,BC = 4,A'C' = 18\). Tính độ dài \(A’B’\), \(B’C’\).

Phương pháp giải - Xem chi tiết

Sử dụng định lý Talet. 

Lời giải chi tiết

 

Vì \((\alpha)\parallel (\beta)\parallel (\gamma)\) nên \(\dfrac{AB}{A’B’}=\dfrac{BC}{B’C’}\).

Mà \(\dfrac{AB}{A’B’}=\dfrac{BC}{B’C’}\)

\(=\dfrac{AB+BC}{A’B’+B’C’}=\dfrac{AC}{A’C’}\).

Suy ra : \(A’B’=\dfrac{A’C’.AB}{AC}=\dfrac{18.5}{9}=10\).

\(B’C’=\dfrac{A’C’.BC}{AC}=\dfrac{18.4}{9}=8\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved