PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 2

Bài 2.3 phần bài tập bổ sung trang 51 SBT toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Xác định hàm số \(y = a{x^2}\) và vẽ đồ thị của nó, biết rằng đồ thị của nó đi qua điểm \(A (-1; 2).\)

Phương pháp giải:

Thay tọa độ điểm đi qua vào hàm số từ đó ta tìm được hệ số \(a.\)

Lời giải chi tiết:

Đồ thị hàm số đi qua \(A (-1; 2)\) nên tọa độ của \(A\) nghiệm đúng phương trình hàm số: \(2 = a{\left( { - 1} \right)^2} \Leftrightarrow a = 2\)

Hàm số đã cho: \(y = 2{x^2}\)

Vẽ đồ thị hàm số: \(y = 2{x^2}\)

\(x\)

\(-2\)

\(-1\)

\(0\)

\(1\)

\(2\)

\(y = 2{x^2}\)

\(8\)

\(2\)

\(0\)

\(2\)

\(8\)

 

 

LG b

LG b

Xác định đường thẳng \(y = a'x + b'\) biết rằng đường thẳng này cắt đồ thị của hàm số vừa tìm được trong câu \(a\) tại điểm \(A\) và điểm \(B\) có tung độ là \(8.\)

Phương pháp giải:

Dựa vào đồ thị, xác định tọa độ giao điểm rồi từ đó tìm được đường thẳng.

Lời giải chi tiết:

Khi \(y = 8\) suy ra: \(2{x^2} = 8 \Rightarrow x =  \pm 2\)

Do đó ta có: \({B_1}\left( { - 2;8} \right)\) và \({B_2}\left( {2;8} \right)\)

Đường thẳng \(y = a'x + b\) đi qua \(A \) và \(B_1\) nên tọa độ của \(A\) và \(B_1\) nghiệm đúng phương trình.

Điểm \(A\) thuộc đồ thị hàm số nên \(2 =  - a' + b'\)

Điểm \(B\) thuộc đồ thị hàm số nên \( 8 =  - 2a' + b'\)

Hai số \(a’\) và \(b’\) là nghiệm của hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - a' + b' = 2} \cr 
{ - 2a' + b' = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{ - a' = 6} \cr 
{ - a' + b' = 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = - 6} \cr 
{6 + b' = 2} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = - 6} \cr 
{b' = - 4} \cr} } \right. \cr} \)

Phương trình đường thẳng \(AB_1\) là \(y =  - 6x - 4\)

Đường thẳng \(y = a'x + b'\) đi qua \(A\) và \(B_2\) nên tọa độ của \(A\) và \(B_2\) nghiệm đúng phương trình đường thẳng.

Điểm \(A: 2 = -a’ + b’\)

Điểm \(B_2: 8 = 2a’ + b’\)

Hai số \(a’\) và \(b’\) là nghiệm của hệ phương trình

\(\eqalign{
& \left\{ {\matrix{
{ - a' + b' = 2} \cr 
{2a' + b' = 8} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{3a' = 6} \cr 
{ - a' + b' = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = 2} \cr 
{ - 2 + b' = 2} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{a' = 2} \cr 
{b' = 4} \cr} } \right. \cr} \)

Phương trình đường thẳng \(AB_2\) là \(y = 2x + 4.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved