PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

Bài 2.3 phần bài tập bổ sung trang 86 SBT toán 8 tập 2

Đề bài

Hình thang \(ABCD \;(AB // CD)\) có hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O.\) Gọi \(M, K, N, H\) lần lượt là chân đường vuông góc hạ từ \(O\) xuống các cạnh \(AB, BC, CD, DA.\) Chứng minh rằng:

a) \(\displaystyle {{OM} \over {ON}} = {{AB} \over {CD}}\)

b) \(\displaystyle {{OH} \over {OK}} = {{BC} \over {AD}}\)

Phương pháp giải - Xem chi tiết

Sử dụng:

- Định lí Ta-lét: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.

- Hệ quả định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.

Lời giải chi tiết

 

a) Vì \(OM ⊥ AB\) và \(ON ⊥ CD\), mà \(AB // CD\) nên suy ra \(M, O, N\) thẳng hàng.

Xét \(\Delta OCN\) có \(AB // CD\), theo hệ quả của định lí Ta-lét ta có:

\(\displaystyle {{OM} \over {ON}} = {{MA} \over {NC}}\)    (1)

Xét \(\Delta ODN\) có \(AB // CD\), theo hệ quả của định lí Ta-lét ta có:

\(\displaystyle {{OM} \over {ON}} = {{MB} \over {ND}}\)    (2)

Từ (1) và (2) và theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\displaystyle {{OM} \over {ON}} = {{MA} \over {NC}} = {{MB} \over {ND}} = {{MA + MB} \over {NC + ND}} \)\(\,\displaystyle = {{AB} \over {CD}}\)

b) Từ \(O\) kẻ đường thẳng song song với \(AB\) và \(CD \) cắt \(AD\) tại \(E\), cắt \(BC\) tại \(F.\)

Xét \(\Delta DAB\) có \(OE // AB\) (cách dựng)

Theo hệ quả định lí Ta-lét ta có: 

\(\displaystyle {{OE} \over {AB}} = {{DO} \over {DB}}\)      (*)

Xét \(\Delta CAB\) có \(OF // AB\) (cách dựng)

Theo hệ quả định lí Ta-lét ta có: 

\( \displaystyle {{OF} \over {AB}} = {{CF} \over {CB}}\)      (2*)

Xét \(\Delta BCD\) có \(OF // CD\) (gt)

Theo định lí Ta-lét ta có:

\(\displaystyle{{DO} \over {DB}} = {{CF} \over {CB}}\)        (3*)

Từ (*), (2*) và (3*) suy ra: \(\displaystyle{{OE} \over {AB}} = {{OF} \over {AB}}\)

Vậy \( OE = OF.\)

Từ đó, ta có:

\({S_{AEO}} = {S_{BFO}}\) (3) (hai tam giác có cùng đường cao và hai đáy bằng nhau);

\({S_{DEO}} = {S_{CFO}}\) (4) (hai tam giác có cùng đường cao và hai đáy bằng nhau)

Từ (3) và (4) suy ra: \({S_{AEO}}+{S_{DEO}} = {S_{BFO}}+{S_{CFO}}\)

\( \Rightarrow {S_{OAD}} = {S_{OBC}}\)

\(\Rightarrow \dfrac{1}{2}OH.AD = \dfrac{1}{2}OK.BC \)

\(\Rightarrow OH.AD = OK.BC \)

\(\Rightarrow \displaystyle {{OH} \over {OK}} = {{BC} \over {AD}}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved