Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cho đường tròn (O), điểm \(A\) nằm bên trong đường tròn, điểm \(B\) nằm ngoài đường tròn sao cho trung điểm \(I\) của \(AB\) nằm bên trong đường tròn. Vẽ dây \(CD\) vuông góc với \(OI\) tại \(I.\) hãy cho biết \(ACBD\) là hình gì? Vì sao?
Phương pháp giải - Xem chi tiết
+ Tứ giác có các đường chéo cắt nhau tại trung điểm của mỗi đường thì tứ giác đó là hình bình hành.
+ Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
Lời giải chi tiết
Xét đường tròn tâm O có: \(OI ⊥ CD\) (gt) mà OI là 1 phần đường kính, CD là dây của đường tròn
Suy ra: \(IC = ID\) (đường kính vuông góc với dây thì đi qua trung điểm dây đó)
Mà: \(IA = IB\) (vì I là trung điểm của AB)
Tứ giác \(ACBD\) có hai đường chéo AB và CD cắt nhau tại trung điểm I của mỗi đường nên nó là hình bình hành.