1. Nội dung câu hỏi
Rút gọn rồi tính giá trị của biểu thức:
a) \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại \(x = 5;y = 7\)
b) \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\)
c) \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại \(x = - 15;y = 5\)
2. Phương pháp giải
Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.
3. Lời giải chi tiết
a) Rút gọn biểu thức:
\(A \) \( = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}} \) \( = \left( {\frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}} \right).\frac{{x - y}}{{2y}} \) \( = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}} \) \( = \frac{y}{{x + y}}\)
Giá trị của biểu thức \(A\) tại \(x \) \( = 5;y \) \( = 7\) là: \(\frac{7}{{5 + 7}} \) \( = \frac{7}{{12}}\).
b) Rút gọn biểu thức:
\(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\\ \) \( = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{{{\left( {2x} \right)}^2} - {y^2}}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\\ \) \( = \frac{{\left( {2x + y} \right)\left( {2x + y} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} - \frac{{8xy}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\\ \) \( = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\)
Giá trị của biểu thức\(B\) tại \(x \) \( = - \frac{1}{2};y \) \( = \frac{3}{2}\) là: \(\frac{{2\left( {2. - \frac{1}{2} - \frac{3}{2}} \right)}}{{ - \frac{1}{2}\left( {2.\frac{{ - 1}}{2} + \frac{3}{2}} \right)}} \) \( = 20\)
c) Rút gọn biểu thức:
\(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{\left( {x + y} \right)\left( {x - y} \right) + {x^2} + xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}}} \right) - \frac{x}{y}\\ \) \( = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{2{x^2} + xy}}{{{x^3} - {y^3}}} - \frac{x}{y}\\ \) \( = \frac{{\left( {{x^3} - {y^3}} \right).x.\left( {2x + y} \right)}}{{xy.\left( {{x^3} - {y^3}} \right)}} - \frac{x}{y}\\ \) \( = \frac{{2x + y}}{y} - \frac{x}{y} \) \( = \frac{{x + y}}{y}\)
Giá trị của biểu thức \(C\) tại \(x \) \( = - 15;y \) \( = 5\) là: \(\frac{{ - 15 + 5}}{5} \) \( = 2\)
SBT Toán 8 - Kết nối tri thức với cuộc sống tập 1
Unit 6: Folk Tales
Tải 20 đề thi học kì 1 mới nhất có lời giải
Chủ đề 1. Môi trường học đường
ĐỊA LÍ VIỆT NAM
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8