Đề bài
Cho \(a > 0,\; b> 0\) và \(a > b\). Chứng tỏ \(\dfrac{1}{a} <\dfrac{1}{b}.\)
Phương pháp giải - Xem chi tiết
Áp dụng các tính chất liên hệ giữa thứ tự và phép nhân với số dương : Khi nhân cả hai vế của một bất đẳng thức với cùng một số dương ta được một bất đẳng thức mới cùng chiều với bất đẳng thức đã cho.
Lời giải chi tiết
Từ \(a>0\), nhân cả hai vế của bất đẳng thức \(a>0\) với số \(b\) dương sẽ được \(ab>0.b\), tức là có \(ab>0.\)
Số \(ab>0\) nên \(\dfrac{1}{ab}>0\).
Từ \(a>b\), nhân cả hai vế của bất đẳng thức \(a>b\) với số \(\dfrac{1}{ab}\) dương, ta được:
\(a.\dfrac{1}{ab}>b.\dfrac{1}{ab}\)
\(\Rightarrow \dfrac{1}{b} >\dfrac{1}{a}\)
Hay \(\dfrac{1}{a} <\dfrac{1}{b}.\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Tiếng Anh lớp 8
Unit 2: Life in the countryside
Bài 10. Quyền và nghĩa vụ lao động của công dân
SBT tiếng Anh 8 mới tập 1
Tải 20 đề kiểm tra 15 phút học kì 2 Văn 8
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8