1. Nội dung câu hỏi
Cho hàm số \(y = \frac{{x - 3}}{{x + 2}}\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) trong mỗi trường hợp sau:
a) \(d\) song song với đường thẳng \(y = 5x - 2;\)
b) \(d\) vuông góc với đường thẳng \(y = - 20x + 1;\)
2. Phương pháp giải
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm x0 thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right).\)
3. Lời giải chi tiết
Ta có: \(y' = \frac{{x + 2 - \left( {x - 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{5}{{{{\left( {x + 2} \right)}^2}}}.\)
a) Vì tiếp tuyến đó song song với đường thẳng \(y = 5x - 2\) nên tiếp tuyến có hệ số góc \(k = 5.\)
Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.
\( \Rightarrow y'\left( {{x_0}} \right) = 5 \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = 5 \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = - 1\\{x_0} = - 3\end{array} \right.\)
Với \({x_0} = - 1 \Rightarrow \) tiếp điểm \({M_1}\left( { - 1; - 4} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( { - 1; - 4} \right)\) là:
\(y = f'\left( { - 1} \right)\left( {x + 1} \right) + f\left( { - 1} \right) \Leftrightarrow y = 5\left( {x + 1} \right) - 4 \Leftrightarrow y = 5x + 1.\)
Với \({x_0} = - 3 \Rightarrow \) tiếp điểm \({M_2}\left( { - 3;6} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 3;6} \right)\) là:
\(y = f'\left( { - 3} \right)\left( {x + 3} \right) + f\left( { - 3} \right) \Leftrightarrow y = 5\left( {x + 3} \right) + 6 \Leftrightarrow y = 5x + 21.\)
b) Vì tiếp tuyến đó vuông góc với đường thẳng \(y = - 20x + 1\) nên tiếp tuyến có hệ số góc \(k = \frac{1}{{20}}.\)
Gọi \(N\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến của đồ thị.
\( \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{20}} \Leftrightarrow \frac{5}{{{{\left( {{x_0} + 2} \right)}^2}}} = \frac{1}{{20}} \Leftrightarrow {\left( {{x_0} + 2} \right)^2} = 100 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 8\\{x_0} = - 12\end{array} \right.\)
Với \({x_0} = 8 \Rightarrow \) tiếp điểm \({M_1}\left( {8;\frac{1}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_1}\left( {8;\frac{1}{2}} \right)\) là:\(y = f'\left( 8 \right)\left( {x - 8} \right) + f\left( 8 \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x - 8} \right) + \frac{1}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{1}{{10}}.\)
Với \({x_0} = - 12 \Rightarrow \) tiếp điểm \({M_2}\left( { - 12;\frac{3}{2}} \right) \Rightarrow \)phương trình tiếp tuyến của đồ thị tại điểm \({M_2}\left( { - 12;\frac{3}{2}} \right)\) là:
\(y = f'\left( { - 12} \right)\left( {x + 12} \right) + f\left( { - 12} \right) \Leftrightarrow y = \frac{1}{{20}}\left( {x + 12} \right) + \frac{3}{2} \Leftrightarrow y = \frac{1}{{20}}x + \frac{{21}}{{10}}.\)
C
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 11
Chuyên đề 2. Một số bệnh dịch ở người và cách phòng chống
SBT Ngữ văn 11 - Kết nối tri thức tập 2
Review (Units 5 - 6)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11