1. Nội dung câu hỏi
Hãy chọn dãy số bị chặn trong các dãy số (\({u_n}\)) sau
A. \({u_n} = 1 - {n^2}\)
B. \({u_n} = {2^n}\)
C. \({u_n} = n\sin n\)
D. \({u_n} = \frac{{2n}}{{n + 1}}\).
2. Phương pháp giải
Chứng minh \(m \le {u_n} \le M\).
3. Lời giải chi tiết
Đáp án D.
\({u_n} = \frac{{2n}}{{n + 1}} = \frac{{2n + 2 - 2}}{{n + 1}} = 2 - \frac{2}{{n + 1}}\)
\(\begin{array}{l}n > 0 \Rightarrow \frac{2}{{n + 1}} > 0 \Rightarrow - \frac{2}{{n + 1}} < 0 \Rightarrow 2 - \frac{2}{{n + 1}} < 2\\n \ge 1 \Rightarrow n + 1 \ge 2 \Rightarrow \frac{2}{{n + 1}} \le 1 \Rightarrow - \frac{2}{{n + 1}} \ge - 1 \Rightarrow 2 - \frac{2}{{n + 1}} \ge 1\end{array}\)
Vậy \(1 \le {u_n} \le 2\) nên dãy số bị chặn.
Phần hai. Địa lí khu vực và quốc gia
Bài 1. Sự tương phản về trình độ phát triển kinh tế - xã hội của các nhóm nước. Cuộc cách mạng khoa học và công nghệ hiện đại - Tập bản đồ Địa lí 11
Bài 15: Dẫn xuất halogen
Chuyên đề 1: Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
Unit 4: ASEAN and Viet Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11