Đề bài
Tìm số hạng thứ năm trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}}\), mà trong khai triển đó số mũ của \(x\) giảm dần.
Phương pháp giải - Xem chi tiết
Sử dụng công thức Nhị thức Niu-tơn
\({\left( {a + b} \right)^n} \)
\(= C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... \)
\(+ C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\).
Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\) để thu gọn biểu thức.
Để tìm số hạng thứ \(k+1\) ta cho số mũ của \(x\) bằng \(k\) và tính số hạng thứ \(k+1\).
Lời giải chi tiết
Số hạng tổng quát trong khai triển \({\left( {x + \dfrac{2}{x}} \right)^{10}} \) là:
\( T_{k+1}={C_{10}^k{x^{10 - k}}{{\left( {\dfrac{2}{x}} \right)}^k}} \)
\( = C_{10}^k{x^{10 - k}}.\frac{{{2^k}}}{{{x^k}}} = C_{10}^k{x^{10 - k - k}}{.2^k}\)
\(= C_{10}^k 2^k x^{10 - 2k}\)
Khi đó số hạng thức 5 ứng với k+1=5 hay k=4 là:
\(T_{ 5} = C_{10}^4 2^4 x^{10 - 2.4}\) \(=C_{10}^4 2^4 x^2= 3360{x^2}\)
Vậy \({T_5} = 3360{x^2}\).
Tải 20 đề kiểm tra 15 phút - Chương 3
Unit 3: Global warming and Ecological systems
Unit 3: Sustainable health
SBT Ngữ văn 11 - Cánh Diều tập 2
PHẦN 3. LỊCH SỬ VIỆT NAM (1858 - 1918)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11