HÌNH HỌC SBT - TOÁN 11

Bài 2.37 trang 81 SBT hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong mặt phẳng \(\left( \alpha  \right)\) cho tam giác \(ABC\). Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều \(Ax\), \(By\), \(Cz\) không nằm trong \(\left( \alpha  \right)\). Trên \(Ax\) lấy đoạn \(AA’ = a\), trên \(By\) lấy đoạn \(BB’ = b\), trên \(Cz\) lấy đoạn \(CC’ = c\).

\( \Rightarrow \dfrac{IB}{IC}= \dfrac{BB'}{CC'} = \dfrac{b}{c}\)

\(CC'\parallel AA' \Rightarrow \Delta JCC' \sim \Delta JAA'\) 

\( \Rightarrow \dfrac{JC}{JA}= \dfrac{CC'}{AA'} = \dfrac{c}{a}\)

\(AA'\parallel BB' \Rightarrow \Delta KAA' \sim \Delta KBB'\) 

\( \Rightarrow \dfrac{KA}{KB}= \dfrac{AA'}{BB'} = \dfrac{a }{ b}\) 

Do đó: \(\dfrac{IB}{IC}.\dfrac{JC}{JA}.\dfrac{KA}{KB} = \dfrac{b }{c}.\dfrac{c}{a}.\dfrac{a}{b} = 1\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Gọi \(I\), \(J\) và \(K\) lần lượt là các giao điểm \(B’C’\), \(C’A’\) và \(A’B’\) với \(\left( \alpha  \right)\).

Chứng minh rằng \(\dfrac{IB}{IC}.\dfrac{JC}{JA}.\dfrac{KA}{KB} = 1\)

Phương pháp giải:

Sử dụng tính chất của hai tam giác đồng dạng.

Lời giải chi tiết:

Ta có:

\(CC'\parallel BB' \Rightarrow \Delta ICC' \sim \Delta IBB'\)

\( \Rightarrow \dfrac{IB}{IC}= \dfrac{BB'}{CC'} = \dfrac{b}{c}\)

\(CC'\parallel AA' \Rightarrow \Delta JCC' \sim \Delta JAA'\) 

\( \Rightarrow \dfrac{JC}{JA}= \dfrac{CC'}{AA'} = \dfrac{c}{a}\)

\(AA'\parallel BB' \Rightarrow \Delta KAA' \sim \Delta KBB'\) 

\( \Rightarrow \dfrac{KA}{KB}= \dfrac{AA'}{BB'} = \dfrac{a }{ b}\) 

Do đó: \(\dfrac{IB}{IC}.\dfrac{JC}{JA}.\dfrac{KA}{KB} = \dfrac{b }{c}.\dfrac{c}{a}.\dfrac{a}{b} = 1\)

LG b

Gọi \(G\) và \(G’\) lần lượt là trọng tâm của các tam giác \(ABC\) và \(A’B’C’\).

Chứng minh: \(GG'\parallel AA'\).

Phương pháp giải:

Sử dụng tính chất đường trung bình của tam giác.

Sử dụng tính chất của trong tâm trong tam giác.

Sử dụng định lý Talet.

Lời giải chi tiết:

Gọi \(H\) và \(H’\) lần lượt là trung điểm của các cạnh \(BC\) và \(B’C’\). Vì \(HH’\) là đường trung bình của hình thang \(BB’CC’\) nên \(HH'\parallel BB'\).

Mà \(BB'\parallel AA'\) suy ra \(HH'\parallel AA'\)

Ta có: \(G \in AH\) và \(G' \in A'H'\) và ta có:

\(\left\{ \matrix{
\dfrac{AG}{AH} = \dfrac{2}{3} \hfill \cr 
\dfrac{A'G'}{A'H'}= \dfrac{2}{3} \hfill \cr} \right. \Rightarrow AA'\parallel GG'\parallel HH'\)

LG c

Tính \(GG’ \) theo \(a\), \(b\), \(c\). 

Phương pháp giải:

Chia đoạn \(GG'\) thành hai đoạn thuộc hai tam giác.

Sử dụng định lý Talet để tính từng cạnh đó.

Lời giải chi tiết:

\(AH' \cap GG' = M \)

\(\Rightarrow GG' = G'M + MG\)

Ta có: \(G'M\parallel AA' \Rightarrow \Delta H'G'M \sim \Delta H'A'A\)

\( \Rightarrow \dfrac{G'M}{AA'} = \dfrac{H'G'}{H'A'} = \dfrac{1}{3} \)

\(\Rightarrow G'M = \dfrac{1}{3}AA' = \dfrac{1}{3}a\)

\(MG\parallel HH' \Rightarrow \Delta AMG \sim \Delta AH'H\) 

\( \Rightarrow \dfrac{MG}{HH'} =\dfrac{AG}{AH} = \dfrac{2}{3}\)

\(\Rightarrow MG =\dfrac{2}{3}HH'\) 

Mặt khác \(HH’\) là đường trung bình của hình thang \(BB’CC’\) nên

\(HH' = \dfrac{BB' + CC'}{2} = \dfrac{b + c}{2} \)

\(\Rightarrow MG = \dfrac{2}{3}HH' \)

\(= \dfrac{2}{3}.\dfrac{b + c}{2} \)

\(= \dfrac{1}{3}\left( {b + c} \right)\)

Do đó: \(GG' = G'M + MG \)

\(= \dfrac{1}{3}a + \dfrac{1}{3}\left( {b + c} \right) \)

\(= \dfrac{1}{3}\left( {a + b + c} \right)\)

Vậy \(GG' = \dfrac{1}{3}\left( {a + b + c} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved