ĐẠI SỐ VÀ GIẢI TÍCH- SBT TOÁN 11

Bài 2.39 trang 79 SBT đại số và giải tích 11

Đề bài

Hệ số của \(x^{25}y^{10}\) trong khai triển của \({(x^3+xy)}^{15}\) là:

A. \(C_{15}^5\)                B. \(C_{25}^{10}\)

C. \(C_{15}^{10}\)                D. \(C_{25}^{15}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức SHTQ trong khai triển nhị thức Niu-tơn \({\left( {a + b} \right)^n} \) là:

\(T_{k+1}= C_n^k{a^{n - k}}{b^k}\) với \(a=x^3, b=xy, n=15\).

Sử dụng các công thức nhân, chia lũy thừa cùng cơ số, lũy thừa của lũy thừa, lũy thừa của một tích: \(x^m.x^n=x^{m+n}\); \(\dfrac{x^m}{x^n}=x^{m−n}\); \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha .\beta }}\); \({(x.y)^\alpha } = {x^\alpha }{y^\alpha }\) để thu gọn biểu thức.

Để tìm hệ số của \(x^{25}y^{10}\) ta cho số mũ của \(x\) bằng \(25\) và số mũ của \(y\) bằng \(10\), giải phương trình tìm \(k\) và tính hệ số của \(x^{25}y^{10}\).

Lời giải chi tiết

SHTQ trong khai triển \({\left( {{x^3} + xy} \right)^{15}} \) là:

\(T_{k+1}=  {C_{15}^k} {\left( {{x^3}} \right)^{15 - k}}{\left( {xy} \right)^k} \)

\(= {C_{15}^k{x^{45 - 3k}}{x^k}{y^k} }\)

\(=  {C_{15}^k{x^{45 - 2k}}{y^k}} \)

Vì đề yêu cầu tìm hệ số của \(x^{25}y^{10}\) khi đó \(x^{45-2k}y^k= x^{25}y^{10}\) nên \(\left\{ \begin{array}{l}45 - 2k = 25\\k = 10\end{array} \right. \Leftrightarrow k = 10\)

Vậy hệ số của \(x^{25}y^{10}\) là \(C_{15}^{10}\).

Đáp án: C.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved