1. Nội dung câu hỏi
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(a\) và \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng
A. \(\frac{{a\sqrt 2 }}{2}\).
B. \(\frac{{a\sqrt 3 }}{4}\).
C. \(\frac{{a\sqrt 6 }}{2}\).
D. \(\frac{{a\sqrt 3 }}{2}\).
2. Phương pháp giải
Tìm đoạn vuông góc chung của \(SA\) và \(BC\)
Gọi \(M\) là trung điểm \(BC\)
Chứng minh \(AM\) là đoạn vuông góc chung của \(SA\) và \(BC\)
Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(AM\)
3. Lời giải chi tiết
Gọi \(M\) là trung điểm \(BC \Rightarrow AM \bot BC\) do áy \(ABC\) là tam giác đều
Ta có \(SA \bot \left( {BC} \right) \Rightarrow AM \bot SA\)
Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng \(AM = \frac{{a\sqrt 3 }}{2}\)
Chọn D.
Chủ đề 2. Quản lí bản thân
Unit 7: Education for school-leavers
Grammar Builder and Reference
Chương I. Giới thiệu chung về chăn nuôi
Bài 7: Tiết 2: EU - Hợp tác, liên kết để cùng phát triển - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11