1. Nội dung câu hỏi
Cho tam giác \(ABC\) cân tại \(A\) có các đường trung tuyến \(BM,CN\) cắt nhau tại \(G\). Trên tia đối của tia \(GB,GC\) lần lượt lấy các điểm \(D,E\) sao cho \(GD = GB,GE = GC\). Tứ giác \(BEDC\) là hình gì? Vì sao?
2. Phương pháp giải
Dựa vào tính chất và dấu hiệu nhận biết của hình bình hành và hình chữ nhật để xác định tứ giác \(BEDC\) .
3. Lời giải chi tiết
Tứ giác \(BEDC\) có hai đường chéo \(BD\) và \(CE\) cắt nhau tại trung điểm \(G\) của mỗi đường nên \(BEDC\) là hình bình hành.
Ta có: \(AB = AC,AM = CM,AN = BN\) nên \(BN = CM\).
\(\Delta BCM = \Delta CBN\) (c.g.c). Suy ra \(BM = CN\).
Do \(G\) là trọng tâm của tam giác \(ABC\) nên
\(BG = \frac{2}{3}BM\) và \(CG = \frac{2}{3}CN\)
Do đó \(BG = CG\). Mà \(G\) là trung điểm của \(BD\) và \(CE\), suy ra \(BD = CE\)
Hình bình hành \(BEDC\) có \(BD = CE\) nên \(BEDC\) là hình chữ nhật.
Chủ đề VIII. Sinh vật và môi trường
Unit 4: Our Past - Quá khứ của chúng ta
Bài 4: Giữ chữ tín
Bài 14: Phòng, chống nhiễm HIV/AIDS
Chủ đề 9. Hiểu bản thân - Chọn đúng nghề
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8