1. Nội dung câu hỏi
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210.
A. 40
B. 30
C. 20
D. 10.
2. Phương pháp giải
Sử dụng công thức số hạng tổng quát của cấp số cộng và công thức tính tổng của cấp số cộng \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\).
3. Lời giải chi tiết
Đáp án D
Gọi số hạng thứ 2, thứ 9 và thứ 44 của cấp số cộng này là \({u_2},{u_9},\,{u_{44}}\).
\(\begin{array}{l}{u_2} = {u_1} + d,\\{u_9} = {u_1} + 8d = ({u_1} + d) + 7d = {u_2} + 7d\\{u_{44}} = {u_1} + 43d = ({u_1} + d) + 42d = {u_2} + 43d\end{array}\)
Vì 3 số này là các số hạng liên tiếp của một cấp số nhân nên ta có: \({u_2}{u_{44}} = u_9^2\)
Và tổng của 3 số đó là 217 nên \({u_2} + {u_9} + {u_{44}} = 217\).
Vậy ta có hệ \(\left\{ \begin{array}{l}{u_2} + {u_9} + {u_{44}} = 217\\{u_2}{u_{44}} = u_9^2\end{array} \right.\)
Nên \(\left\{ \begin{array}{l}{u_2} + {u_2} + 7d + {u_{42}} + 42d = 217\\{u_2}\left( {{u_2} + 42d} \right) = \left( {{u_2} + 7d} \right)_{}^2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_2} = 7\\d = 4\end{array} \right.(do\,\,d \ne 0)\)
Do đó \({u_1} = {u_2} - d = 3\) và \({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = n(2n + 1)\)
Tổng của chúng là 210 nên \(210 = n(2n + 1)\).
Phương trình \(210 = n(2n + 1)\) có nghiệm nguyên dương là \(n = 10\).
Review (Units 7 - 8)
Bài 19: Carboxylic acid
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Bài 9: Tiết 3: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Nhật Bản - Tập bản đồ Địa lí 11
Review 2 (Units 4-5)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11