Kết quả \((b,c)\) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó \(b\) là số chấm xuất hiện trong lần gieo đầu, \(c\) là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai \({x^2} + bx + c = 0\). Tính xác suất để
LG a
Phương trình vô nghiệm;
Phương pháp giải:
Để tính xác suất của biến cố \(A\).
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Trong bài:
- Không gian mẫu là công việc hoàn thành bởi hai hành động liên tiếp nên sử dụng quy tắc nhân để tính số phần tử trong không gian mẫu.
- Số phần tử trong biến cố sử dụng quy tắc cộng để tính.
Lời giải chi tiết:
Không gian mẫu \(\Omega = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\).
Ta có \(b\) có \(6\) cách, \(c\) có \(6\) cách nên theo quy tắc nhân, số phần tử trong không gian mẫu \(n(\Omega)=6.6=36\)
Gọi \(A\) là các biến cố cần tìm xác suất ứng với phương trình vô nghiệm.
Ta có \(\Delta = {b^2} - 4c.\)
\(A = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c < 0} \right\}\)
\(=\{\left( {1,1} \right),\left( {1,2} \right),...,\left( {1,6} \right),\)
\(\left( {2,2} \right),...,\left( {2,6} \right),\)
\(\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {3,6} \right),\)
\(\left( {4,5} \right),\left( {4,6} \right)\}\).
Suy ra \(n\left( A \right) = 6 + 5 + 4 + 2 = 17\)
Vậy xác suất để phương trình vô nghiệm là \({\rm{P}}\left( A \right) = \dfrac{{n(A)}}{{n(\Omega )}} = \dfrac{{17}}{{36}}\).
LG b
Phương trình có nghiệm kép;
Phương pháp giải:
Để tính xác suất của biến cố \(A\).
+) Tính số phần tử của không gian mẫu \(n(\Omega)\).
+) Tính số phần tử của biến cố \(A\): \(n(A)\).
+) Tính xác suất của biến cố \(A\): \(P(A)=\dfrac{n(A)}{n(\Omega)}\).
Trong bài:
- Không gian mẫu là công việc hoàn thành bởi hai hành động liên tiếp nên sử dụng quy tắc nhân để tính số phần tử trong không gian mẫu.
- Số phần tử trong biến cố sử dụng quy tắc cộng để tính.
Lời giải chi tiết:
Không gian mẫu \(\Omega = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\).
Ta có \(b\) có \(6\) cách, \(c\) có \(6\) cách nên theo quy tắc nhân, số phần tử trong không gian mẫu \(n(\Omega)=6.6=36\)
Gọi \(B\) là các biến cố cần tìm xác suất ứng với phương trình có nghiệm kép.
Ta có \(\Delta = {b^2} - 4c.\)
\(\begin{array}{l}B = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c = 0} \right\}\\{\rm{ }} = \left\{ {\left( {2,1} \right),\left( {4,4} \right)} \right\}.\end{array}\)
Khi đó \(n(B)=2\)
Vậy xác suất để phương trình có nghiệm kép là \(P\left( B \right) = \dfrac{2}{{36}} = \dfrac{1}{{18}}\).
LG c
Phương trình có nghiệm
Phương pháp giải:
Với bài toán này ta tính xác suất bằng cách sử dụng hệ quả: Với mọi biến cố \(A\) ta có \(P(\overline{A})=1-P(A)\).
Lời giải chi tiết:
- Không gian mẫu là công việc hoàn thành bởi hai hành động liên tiếp nên sử dụng quy tắc nhân để tính số phần tử trong không gian mẫu. Không gian mẫu \(\Omega = \left\{ {\left( {b,c} \right):1 \le b,c \le 6} \right\}\). Ta có \(b\) có \(6\) cách, \(c\) có \(6\) cách nên theo quy tắc nhân, số phần tử trong không gian mẫu \(n(\Omega)=6.6=36\).
- Gọi \(C\) là các biến cố cần tìm xác suất ứng với phương trình có nghiệm kép.
Ta có \(\Delta = {b^2} - 4c.\)
\(C = \left\{ {\left( {b,c} \right) \in \Omega |{b^2} - 4c \ge 0} \right\}\)
Ta thấy biến cố \(C\) là biến cố đối của \(A\) : \(C = \overline A \), do đó theo hệ quả với mọi biến cố \(A\) ta có \(P(\overline{A})=1-P(A)\) ta có
Vậy \(P\left( C \right) = 1 - P(A) = 1 - \dfrac{{17}}{{36}} = \dfrac{{19}}{{36}}\).
Phần 3. Động cơ đốt trong
Chủ đề 5: Phối hợp kĩ thuật đánh cầu cao thuận tay
Bài 10. Kĩ thuật sử dụng lựu đạn
Chủ đề 2. Làm chủ cảm xúc và các mối quan hệ
Câu hỏi tự luyện Hóa 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11