Giải bài 25 trang 14 SBT toán 10 - Cánh diều

Đề bài

Cho đa giác lồi n đỉnh (n > 3). Biết rằng, số đường chéo của đa giác đó là 170. Tìm n.

Phương pháp giải - Xem chi tiết

Bước 1: Tính số đường chéo được tạo từ n đỉnh tạo thành phương trình ẩn n với vế phải bằng 170

Bước 2: Giải phương trình tìm được ở bước 1 để tìm n

Lời giải chi tiết

Đa giác lồi có n đỉnh thì có n cạnh.

Số cách chọn 2 đỉnh trong n đỉnh là: \(C_{12}^2\) cách chọn

\( \Rightarrow \) Số đường chéo cần tìm là \(C_n^2 - n\)

Theo đề bài, ta có số đường chéo của đa giác là 170

\( \Rightarrow C_n^2 - n = 170 \Leftrightarrow \frac{{n!}}{{2!(n - 2)!}} - n = 170\)\( \Leftrightarrow \frac{{n(n - 1)(n - 2)!}}{{2(n - 2)!}} - n = 170 \Leftrightarrow \frac{{n(n - 1)}}{2} - n = 170\)

                         \( \Leftrightarrow n(n - 1) - 2n = 340 \Leftrightarrow {n^2} - 3n - 340 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}n = 20\\n =  - 17\end{array} \right.\)

n > 3 nên ta nhận n = 20

Vậy n = 20 thỏa mãn yêu cầu bài toán

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi