Bài 25 trang 160 SBT toán 9 tập 1

Đề bài

Cho hình \(75,\) trong đó hai dây \(CD, EF\) bằng nhau và vuông góc với nhau tại \(I,\) \(IC = 2cm,\) \(ID = 14cm.\) Tính khoảng cách từ \(O\) đến mỗi dây.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức: Trong một đường tròn: 

+) Hai dây bằng nhau thì cách đều tâm.

+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. 

Lời giải chi tiết

 

Kẻ \(OH ⊥ CD,\) \(OK ⊥EF\)

Vì tứ giác \(OKIH\) có ba góc vuông nên nó là hình chữ nhật.

Ta có: \(CD = EF\;\; (gt)\)

Suy ra: \(OH = OK\) (hai dây bằng nhau cách đều tâm)

Suy ra tứ giác \(OKIH\) là hình vuông.

Ta có:\(CD = CI + ID = 2 + 14 =16\; (cm)\)

Xét (O) có \(OH ⊥ CD\) mà OH là 1 phần đường kính và CD là dây cung nên \(HC = HD = \displaystyle {{CD} \over 2} = 8\) \((cm)\) (quan hệ giữa đường kính và dây cung)

Suy ra \(IH = HC – CI = 8 – 2 = 6\; (cm)\)

Do đó \(OH = OK =IH= 6\; (cm)\)  (do \(OKIH\) là hình vuông).

Vậy khoảng cách từ \(O\) đến mỗi dây là 6cm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi