1. Nội dung câu hỏi
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi hệ thức truy hồi: \({u_1} = 1,{u_{n + 1}} = {u_n} + \left( {n + 1} \right)\)
a) Mỗi số hạng của dãy số này gọi là một số tam giác. Viết bảy số tam giác đầu.
b) Biết rằng \(1 + 2 + ... + n = \frac{{n\left( {n + 1} \right)}}{2}\). Hãy chứng tỏ công thức của số hạng tổng quát là: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\).
c) Chứng minh rằng \({u_{n + 1}} + {u_n} = {\left( {n + 1} \right)^2}\), tức là tổng của hai số tam giác liên tiếp là một số chính phương.
2. Phương pháp giải
Ta kí hiệu \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\), do đó dãy số \(\left( {{u_n}} \right)\) được viết dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) Số \({u_1}\) gọi là số hạng đầu, số \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số
3. Lời giải chi tiết
a) Bảy số tam giác đầu là:
\({u_1} = 1,\;{u_2} = 1 + \left( {1 + 1} \right) = 3,\;{u_3} = 3 + \left( {2 + 1} \right) = 6,\;{u_4} = 6 + \left( {3 + 1} \right) = 10,\;{u_5} = 10 + \left( {4 + 1} \right) = 15,\)
\({u_6} = 15 + \left( {5 + 1} \right) = 21,{u_7} = 21 + \left( {1 + 6} \right) = 28\)
b) Ta nhận thấy: \({u_2} = 1 + 2,{u_3} = 1 + 2 + 3,{u_4} = 1 + 2 + 3 + 4,..\)
Do đó, ta dự đoán: \({u_{n + 1}} = 1 + 2 + ... + \left( {n + 1} \right) = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2}\)
c) Theo công thức phần b ta có:
\({u_{n + 1}} + {u_n} = \frac{{\left( {n + 1} \right)\left( {n + 2} \right)}}{2} + \frac{{n\left( {n + 1} \right)}}{2} = \frac{{\left( {n + 1} \right)\left( {n + 2 + n} \right)}}{2} = {\left( {n + 1} \right)^2}\)
Vậy tổng của hai số tam giác liên tiếp là một số chính phương.
Chương 1: Cân bằng hóa học
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chương III. Điện trường
Cumulative Review
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11