Bài 1. Thu thập và phân loại dữ liệu
Bài 2. Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ
Bài 3. Phân tích và xử lí dữ liệu thu được ở dạng bảng, biểu đồ
Bài 4. Xác suất của biến cố ngẫu nhiên trong một số trò chơi đơn giản
Bài 5. Xác suất thực nghiệm của một biến cố trong một số trò chơi đơn giản
Bài tập cuối chương VI
Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài tập cuối chương VIII
1. Nội dung câu hỏi
Một người đứng ở vị trí \(M\) trên cây cầu bắc qua con kênh quan sát ba điểm thẳng hàng \(A,B,D\) lần lươt là chân hai cột đèn trồng ở bờ kênh và chân cầu (Hình 26). Người đó nhận thấy góc nhìn đến hai điểm \(A,D\) thì bằng góc nhìn đến hai điểm \(B,D\), tức là \(\widehat {AMD} = \widehat {BMD}\). Người đó muốn ước lượng tỉ số khoảng cách từ vị trí \(M\) đang đứng đến điểm \(A\) và đến điểm \(B\) mà không cần phải đo trực tiếp hai khoảng cạc đó. Hỏi có thể ước lượng tỉ số đó được hay không?
2. Phương pháp giải
Áp dụng tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.
3. Lời giải chi tiết
Từ giả thiết ta có \(\widehat {AMD} = \widehat {BMD}\), suy ra \(MD\) là phân giác của góc \(AMB\). Do đó \(\frac{{MA}}{{MB}} = \frac{{DA}}{{DB}}\). Vậy người đó có thể ước lượng được tỉ số khoảng cách từ vị trí \(M\) đang đứng đến điểm \(A\) và đến điểm \(B\) mà không cần phải đo trực tiếp hai khoảng cách đó bằng cách đo các khoảng cách \(DA,DB\) và tính \(\frac{{DA}}{{DB}}\).
Bài 9. Phòng ngừa tai nạn vũ khí, cháy, nổ và các chất độc hại
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TỪ GIỮA THẾ KỈ XVI ĐẾN NĂM 1917)
Phần Địa lí
Chủ đề 3. Xây dựng trường học thân thiện
Chủ đề 8. Mùa hè
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8