1. Nội dung câu hỏi
Cho \({\rm{sin}}x = - \frac{1}{3},x \in \left( {\pi ;\frac{{3\pi }}{2}} \right)\). Tính giá trị \({\rm{cos}}\left( {2x - \frac{\pi }{3}} \right)\).
2. Phương pháp giải
Xét dấu \(\cos x\) khi \(x \in \left( {\pi ;\frac{{3\pi }}{2}} \right)\)
Thay vào đẳng thức \({\sin ^2}x + {\cos ^2}x = 1\) ta tìm được \(\cos x\)
Áp dụng công thức cộng
\(\cos \left( {a - b} \right) = \cos a.\cos b + \sin a.\sin b\)
3. Lời giải chi tiết
\(x \in \left( {\pi ;\frac{{3\pi }}{2}} \right) \Rightarrow \cos x < 0 \Rightarrow \cos x = - \sqrt {1 - {{\sin }^2}x} = - \sqrt {1 - {{\left( { - \frac{1}{3}} \right)}^2}} = - \frac{{2\sqrt 2 }}{3}\)
Ta tính được: \({\rm{cos}}x = - \frac{{2\sqrt 2 }}{3}\).
Khi đó:\({\rm{cos}}\left( {2x - \frac{\pi }{3}} \right) = \frac{1}{2}{\rm{cos}}2x + \frac{{\sqrt 3 }}{2}{\rm{sin}}2x = \frac{1}{2}\left( {1 - 2{\rm{si}}{{\rm{n}}^2}x} \right) + \sqrt 3 {\rm{sin}}x{\rm{cos}}x = \frac{{7 + 4\sqrt 6 }}{{18}}\).
Unit 9: Life Now and in the Past
SBT tiếng Anh 11 mới tập 1
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11