Bài 2.61 trang 132 SBT giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các bất phương trình sau bằng đồ thị:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\(\displaystyle {\left( {\frac{1}{2}} \right)^x} < x - \frac{1}{2}\)

Phương pháp giải:

- Vẽ đồ thị hàm số \(\displaystyle y = {\left( {\frac{1}{2}} \right)^x}\left( C \right)\) và đường thẳng \(\displaystyle y = x - \frac{1}{2}\left( d \right)\) trên cùng một mặt phẳng tọa độ.

- Quan sát đồ thị, nghiệm của bất phương trình là phần \(\displaystyle x\) mà ứng với nó thì đồ thị \(\displaystyle \left( C \right)\) nằm phía dưới đường thẳng \(\displaystyle d\).

Giải chi tiết:

Vẽ đồ thị của hàm số \(\displaystyle y = {\left( {\frac{1}{2}} \right)^x}\) và đường thẳng \(\displaystyle y = x - \frac{1}{2}\) trên cùng một hệ trục tọa độ.

Ta thấy chúng cắt nhau tại điểm có hoành độ \(\displaystyle x = 1\).

Với \(\displaystyle x > 1\) đồ thị của hàm số \(\displaystyle y = {\left( {\frac{1}{2}} \right)^x}\) nằm phía dưới đường thẳng \(\displaystyle y = x - \frac{1}{2}\).

Vậy tập nghiệm của bất phương trình đã cho là \(\displaystyle (1; + \infty )\)

LG b

\(\displaystyle {\left( {\frac{1}{3}} \right)^x} \ge x + 1\)

Phương pháp giải:

- Vẽ đồ thị hàm số \(\displaystyle y = {\left( {\frac{1}{3}} \right)^x}\left( C \right)\) và đường thẳng \(\displaystyle y = x + 1\left( d \right)\) trên cùng một mặt phẳng tọa độ.

- Quan sát đồ thị, nghiệm của bất phương trình là phần \(\displaystyle x\) mà ứng với nó thì đồ thị \(\displaystyle \left( C \right)\) nằm phía trên đường thẳng \(\displaystyle d\).

Giải chi tiết:

Vẽ đồ thị của hàm số \(\displaystyle y = {\left( {\frac{1}{3}} \right)^x}\) và đường thẳng \(\displaystyle y = x + 1\) trên cùng một hệ trục tọa độ.

Ta thấy chúng cắt nhau tại điểm có hoành độ \(\displaystyle x = 0\).

Khi \(\displaystyle x < 0\) đồ thị của hàm số \(\displaystyle y = {\left( {\frac{1}{3}} \right)^x}\) nằm phía trên đường thẳng \(\displaystyle y = x + 1\).

Vậy tập nghiệm của bất phương trình đã cho là \(\displaystyle ( - \infty ;0]\).

LG c

\(\displaystyle {\log _{\frac{1}{3}}}x > 3x\)

Phương pháp giải:

- Vẽ đồ thị hàm số \(\displaystyle y = {\log _{\frac{1}{3}}}x\left( C \right)\) và đường thẳng \(\displaystyle y = 3x\left( d \right)\) trên cùng một mặt phẳng tọa độ.

- Quan sát đồ thị, nghiệm của bất phương trình là phần \(\displaystyle x\) mà ứng với nó thì đồ thị \(\displaystyle \left( C \right)\) nằm phía trên đường thẳng \(\displaystyle d\).

Giải chi tiết:

Vẽ đồ thị của hàm số \(\displaystyle y = {\log _{\frac{1}{3}}}x\) và đường thẳng \(\displaystyle y = 3x\) trên cùng một hệ trục tọa độ ta thấy chúng cắt nhau tại điểm có hoành độ \(\displaystyle x = \frac{1}{3}\).

Khi \(\displaystyle x < \frac{1}{3}\) đồ thị của hàm số \(\displaystyle y = {\log _{\frac{1}{3}}}x\) nằm phía trên đường thẳng \(\displaystyle y = 3x\).

Vậy tập nghiệm của bất phương trình đã cho là \(\displaystyle \left( { - \infty ;\frac{1}{3}} \right)\).

LG d

\(\displaystyle {\log _2}x \le 6 - x\)

Phương pháp giải:

- Vẽ đồ thị hàm số \(\displaystyle y = {\log _2}x\left( C \right)\) và đường thẳng \(\displaystyle y = 6 - x\left( d \right)\) trên cùng một mặt phẳng tọa độ.

- Quan sát đồ thị, nghiệm của bất phương trình là phần \(\displaystyle x\) mà ứng với nó thì đồ thị \(\displaystyle \left( C \right)\) nằm phía dưới đường thẳng \(\displaystyle d\).

Giải chi tiết:

Vẽ đồ thị của hàm số \(\displaystyle y = {\log _2}x\) và đường thẳng \(\displaystyle y = 6 - x\) trên cùng một hệ trục tọa độ.

Ta thấy chúng cắt nhau tại điểm có hoành độ \(\displaystyle x = 4\).

Khi \(\displaystyle x < 4\), đồ thị của hàm số \(\displaystyle y = {\log _2}x\) nằm phía dưới \(\displaystyle y = 6 - x\) .

Vậy tập nghiệm của bất phương trình đã cho là \(\displaystyle ( - \infty ;4]\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved