Giải bài 27 trang 32 SBT toán 10 - Cánh diều

Đề bài

a) Biểu diễn miền nghiệm của các bất phương trình sau: \(\left\{ {\begin{array}{*{20}{c}}{3x - y \le 9}\\{3x + 6y \le 30}\\{x \ge 0}\\{0 \le y \le 4}\end{array}} \right.\left( I \right)\)

b) Tìm x, y là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x + 4y\) đạt giá trị lớn nhất

Phương pháp giải - Xem chi tiết

a) Xác định miền nghiệm của từng bpt. Miền nghiệm của hệ bpt là miền giao của các miền nghiệm ấy.

Biểu diễn miền nghiệm của bpt \(ax + by < c\)

Bước 1: Vẽ đường thẳng \(d:ax + by = c\)

Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không thuộc d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\)). Tính \(a{x_o} + b{y_o}\) và so sánh với c

Bước 3: Kết luận

Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)

Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)

b) Tính giá trị của \(F\left( {x;y} \right)\) tại các đỉnh của miền đa giác nghiệm.

Lời giải chi tiết

Vẽ các đường thẳng:

d1: 3x – y = 9 đi qua hai điểm có tọa độ là (3; 0) và (0; 9).

d2: 3x + 6y = 30 đi qua hai điểm (10; 0) và (0; 5).

d3: x = 0 là trục tung.

d4: y = 0 là trục hoành

d5: y = 4 đi qua điểm (0; 4) và song song với trục hoành.

Gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.

Miền nghiệm của hệ bất phương trình là miền ngũ giác OABCD với O(0; 0), A(0; 4), B(2; 4), C(4; 3), D(3; 0):

 

b) Thay x,y lần lượt là tọa độ các điểm O, A, B, C, D vào biểu thức F:

 \(O(0;0)\)\(A(0;4)\)\(B(2;4)\)\(C(4;3)\)\(D(3;0)\)
\(F = 3x + 4y\)\(0\)\(16\)\(22\)\(24\)\(9\)

F đạt giá trị lớn nhất bằng 24 tại \(x = 4,y = 3\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved