Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Ôn tập chương III. Hệ hai phương trình bậc nhất hai ẩn
Bài 1. Hàm số bậc hai y=ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số bậc hai
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Bài tập ôn chương IV. Hàm số y=ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Với những giá trị nào của \(x\) thì giá trị của hai biểu thức bằng nhau:
LG a
LG a
\({x^2} + 2 + 2\sqrt 2 \) và \(2\left( {1 + \sqrt 2 } \right)x\)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\({x^2} + 2 + 2\sqrt 2 = 2\left( {1 + \sqrt 2 } \right)x \)
\( \Leftrightarrow {x^2} - 2\left( {1 + \sqrt 2 } \right)x + 2 + 2\sqrt 2 = 0 \)
\( \Delta ' = b{'^2} - ac\)\(= {\left[ { - \left( {1 + \sqrt 2 } \right)} \right]^2} - 1.\left( {2 + 2\sqrt 2 } \right) \)
\(= 1 + 2\sqrt 2 + 2 - 2 - 2\sqrt 2 = 1 > 0 \)
\( \sqrt {\Delta '} = \sqrt 1 = 1\)
Phương trình có hai nghiệm phân biệt:
\( \displaystyle {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{1 + \sqrt 2 + 1} \over 1} = 2 + \sqrt 2 \)
\(\displaystyle {x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{1 + \sqrt 2 - 1} \over 1} = \sqrt 2 \)
Vậy với \(x = 2 + \sqrt 2 \) hoặc \(x = \sqrt 2 \) thì hai biểu thức đã cho bằng nhau.
LG b
LG b
\(\sqrt 3 {x^2} + 2x - 1\) và \(2\sqrt 3 x + 3\)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(\sqrt 3 {x^2} + 2x - 1 = 2\sqrt 3 x + 3 \)
\(\Leftrightarrow \sqrt 3 {x^2} + 2x - 1 - 2\sqrt 3 x - 3 =0\)
\( \Leftrightarrow \sqrt 3 {x^2} + \left( {2 - 2\sqrt 3 } \right)x - 4 = 0\)
\( \Leftrightarrow \sqrt 3 {x^2} + 2\left( {1 - \sqrt 3 } \right)x - 4 = 0 \)
\( \Delta ' = b{'^2} - ac\)\(= {\left( {1 - \sqrt 3 } \right)^2} - \sqrt 3 \left( { - 4} \right) \)
\( = 1 - 2\sqrt 3 + 3 + 4\sqrt 3 \)
\( = 1 + 2\sqrt 3 + 3 = {\left( {1 + \sqrt 3 } \right)^2} > 0 \)
\( \sqrt {\Delta '} = \sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} = 1 + \sqrt 3 \)
Phương trình có hai nghiệm phân biệt:
\(\displaystyle {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle= {{\sqrt 3 - 1 + 1 + \sqrt 3 } \over {\sqrt 3 }} = {{2\sqrt 3 } \over {\sqrt 3 }} = 2 \)
\( \displaystyle{x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle= {{\sqrt 3 - 1 - 1 - \sqrt 3 } \over {\sqrt 3 }} = {{ - 2} \over {\sqrt 3 }} \)\(\,\displaystyle= {{ - 2\sqrt 3 } \over 3} \)
Vậy \(x = 2\) hoặc \(\displaystyle x = {{ - 2\sqrt 3 } \over 3}\) thì hai biểu thức đó bằng nhau.
LG c
LG c
\( - 2\sqrt 2 x - 1\) và \(\sqrt 2 {x^2} + 2x + 3\)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\(- 2\sqrt 2 x - 1 = \sqrt 2 {x^2} + 2x + 3 \)
\(\Leftrightarrow \sqrt 2 {x^2} + 2x + 3 +2\sqrt 2 x +1=0\)
\( \Leftrightarrow \sqrt 2 {x^2} + \left( {2 + 2\sqrt 2 } \right)x + 4 = 0 \)
\(\Leftrightarrow \sqrt 2 {x^2} + 2\left( {1 + \sqrt 2 } \right)x + 4 = 0 \)
\( \Delta ' = b{'^2} - ac\)\(= {\left( {1 + \sqrt 2 } \right)^2} - \sqrt 2 .4 \)
\( = 1 + 2\sqrt 2 + 2 - 4\sqrt 2 \)
\( = 1 - 2\sqrt 2 + 2 = {\left( {\sqrt 2 - 1} \right)^2} > 0 \)
\(\sqrt {\Delta '} = \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} = \sqrt 2 - 1 \)
Phương trình có hai nghiệm phân biệt:
\(\displaystyle {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle= {{ - 1 - \sqrt 2 + \sqrt 2 - 1} \over {\sqrt 2 }} = {{ - 2} \over {\sqrt 2 }} \)\(\,= - \sqrt 2 \)
\(\displaystyle{x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle= {{ - 1 - \sqrt 2 - \sqrt 2 + 1} \over {\sqrt 2 }} = {{ - 2\sqrt 2 } \over {\sqrt 2 }}\)\(\, = - 2 \)
Vậy \(x = - \sqrt 2 \) hoặc \(x = - 2\) thì hai biểu thức bằng nhau.
LG d
LG d
\({x^2} - 2\sqrt 3 x - \sqrt 3 \) và \(2{x^2} + 2x + \sqrt 3 \)
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\({x^2} - 2\sqrt 3 x - \sqrt 3 = 2{x^2} + 2x + \sqrt 3 \)
\(\Leftrightarrow 2{x^2} + 2x + \sqrt 3 -{x^2} + 2\sqrt 3 x + \sqrt 3=0\)
\(\Leftrightarrow {x^2} + \left( {2 + 2\sqrt 3 } \right)x + 2\sqrt 3 = 0 \)
\( \Leftrightarrow {x^2} + 2\left( {1 + \sqrt 3 } \right)x + 2\sqrt 3 = 0 \)
\( \Delta ' = b{'^2} - ac\)\(= {\left( {1 + \sqrt 3 } \right)^2} - 1.2\sqrt 3 \)
\( = 1 + 2\sqrt 3 + 3 - 2\sqrt 3 = 4 > 0 \)
\( \sqrt {\Delta '} = \sqrt 4 = 2 \)
Phương trình có hai nghiệm phân biệt:
\(\displaystyle {x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{ - 1 - \sqrt 3 + 2} \over 1} = 1 - \sqrt 3 \)
\(\displaystyle {x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{ - 1 - \sqrt 3 - 2} \over 1} = - 3 - \sqrt 3 \)
Vậy \(x = 1 - \sqrt 3 \) hoặc \(x = - 3 - \sqrt 3 \) thì hai biểu thức bằng nhau.
LG e
LG e
\(\sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 \) và \( - {x^2} - 2\sqrt 3 x + 2\sqrt 5 + 1\)?
Phương pháp giải:
Phương trình \(a{x^2} + bx + c = 0\,(a \ne 0)\) và \(b = 2b'\), \(\Delta ' = b{'^2} - ac\)
+ Nếu \(\Delta ' >0\) thì phương trình có hai nghiệm phân biệt:
\({x_1}=\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\); \({x_2}=\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)
+ Nếu \(\Delta ' =0\) thì phương trình có nghiệm kép \({x_1}={x_2}=\dfrac{-b'}{a}\).
+ Nếu \(\Delta ' <0\) thì phương trình vô nghiệm.
Lời giải chi tiết:
\( \sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 = - {x^2} - 2\sqrt 3 x \)\(\,+ 2\sqrt 5 + 1 \)
\( \Leftrightarrow \sqrt 3 {x^2} + 2\sqrt 5 x - 3\sqrt 3 +{x^2} \)\(+ 2\sqrt 3 x \,- 2\sqrt 5 - 1=0 \)
\( \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + \left( {2\sqrt 5 + 2\sqrt 3 } \right)x \)\(\,- 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \)
\( \Leftrightarrow \left( {\sqrt 3 + 1} \right){x^2} + 2\left( {\sqrt 5 + \sqrt 3 } \right)x\)\(\, - 3\sqrt 3 - 2\sqrt 5 - 1 = 0 \)
\( \Delta ' = b{'^2} - ac\)\(= {\left( {\sqrt 5 + \sqrt 3 } \right)^2}\)\(\, - \left( {\sqrt 3 + 1} \right)\left( { - 3\sqrt 3 - 2\sqrt 5 - 1} \right) \)
\(= 5 + 2\sqrt {15} + 3 + 9 + 2\sqrt {15} + \sqrt 3 \)\(\,+ 3\sqrt 3 + 2\sqrt 5 + 1 \)
\( = 18 + 4\sqrt 3 + 2\sqrt 5 + 4\sqrt {15} \)
\( = 1 + 12 + 5 + 2.2\sqrt 3 + 2\sqrt 5 \)\(\,+ 2.2\sqrt 3 .\sqrt 5 \)
\( = 1 + {\left( {2\sqrt 3 } \right)^2} \)\(\,+ {\left( {\sqrt 5 } \right)^2} + 2.1.2\sqrt 3 \)\(\,+ 2.1.\sqrt 5 + 2.2\sqrt 3 .\sqrt 5 \)
\(= {\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)^2} > 0 \)
\( \sqrt {\Delta '} = \sqrt {{{\left( {1 + 2\sqrt 3 + \sqrt 5 } \right)}^2}} \)\(\,= 1 + 2\sqrt 3 + \sqrt 5 \)
Phương trình có hai nghiệm phân biệt:
\( \displaystyle{x_1} =\dfrac{-b' + \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) + 1 + 2\sqrt 3 + \sqrt 5 } \over {\sqrt 3 + 1}} \)\(\,\displaystyle= {{1 + \sqrt 3 } \over {\sqrt 3 + 1}} = 1 \)
\( \displaystyle{x_2} =\dfrac{-b' - \sqrt{\bigtriangleup '}}{a}\)\( \displaystyle = {{ - \left( {\sqrt 5 + \sqrt 3 } \right) - 1 - 2\sqrt 3 - \sqrt 5 } \over {\sqrt 3 + 1}} \)\(\,\displaystyle= {{ - 1 - 3\sqrt 3 - 2\sqrt 5 } \over {\sqrt 3 + 1}} \)
\( = -4 + \sqrt 3 + \sqrt 5 - \sqrt {15} \)
Vậy \(x=1\) và \(x = -4 + \sqrt 3 + \sqrt 5 - \sqrt {15} \) thì hai biểu thức bằng nhau.
Âm nhạc
Bài 31. Vùng Đông Nam Bộ
Bài 14. Giao thông vận tải và bưu chính viễn thông
Bài 40. Thực hành: Đánh giá tiềm năng kinh tế của các đảo ven bờ và tìm hiểu về ngành công nghiệp dầu khí
Bài 33