PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 28 trang 68 SBT toán 9 Tập 1

Đề bài

a)  Vẽ trên cùng một mặt phẳng tọa độ đồ thị của các hàm số 

\(y = -2x\) ;              (1)

\(y = 0,5x\) ;            (2)

b) Qua điểm K(0;2) vẽ đường thẳng (d) song song với trục Ox. Đường thẳng (d) cắt các đường thẳng (1) , (2) lần lượt tại A, B. Tìm tọa độ của các điểm A, B.

c)  Hãy chứng tỏ rằng \(\widehat {AOB} = {90^0}\) (hai đường thẳng \(y = -2x\) và \(y = 0,5x\) vuông góc với nhau).

Phương pháp giải - Xem chi tiết

Cách vẽ đồ thị hàm số \(y = ax + b\) \((a \ne 0)\)

Nếu \(b = 0\)  ta có hàm số \(y = ax\). Đồ thị của  \(y = ax\)  là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(A(1;a)\);

Nếu \(b \ne 0\) thì đồ thị \(y = ax + b\) là đường thẳng đi qua các điểm \(A(0;b)\); \(B( - \dfrac{b}{a};0)\).

Sử dụng tam giác đồng dạng để chứng minh hai đường thẳng vuông góc.

Lời giải chi tiết

 

a) * Vẽ đồ thị hàm số \(y = -2x\)

Cho \(x = 0\) thì \(y = 0.\) Ta có: \(O(0;0)\)

Cho \(x = -1\) thì \(y = 2.\) Ta có : \(A(-1;2)\)

Đồ thị hàm số \(y = -2x\) là đường thẳng đi qua điểm O và A.

* Vẽ đồ thị hàm số \(y = 0,5 x\)

Cho \(x = 0\)  thì \(y = 0.\) Ta có : \(O(0;0)\)

Cho \(x = 1\) thì \(y = 0,5\)  . Ta có: \(A_2(1;0,5)\)

Đồ thị hàm số \(y = 0,5x\) đi qua O và \(A_2.\) 

b) Đường thẳng (d) song song với trục Ox và đi qua điểm \(K(0;2)\) nên nó là đường thẳng \(y = 2\)

Đường thẳng \(y = 2\) cắt đường thẳng (1) tại A nên điểm A có tung độ bằng \(2\).

Thay \(y = 2\) vào phương trình  \(y = -2x\) ta được \(2=-2x\Rightarrow x = -1.\)

Vậy điểm \(A(-1;2)\)

Đường thẳng \(y = 2\) cắt đường thẳng (2) tại B nên điểm B có tung độ bằng 2.

Thay \(y = 2\) vào phương trình \(y = 0,5x\) ta được \(2=0,5x \Rightarrow x = 4\)

Vậy điểm \(B(4;2)\).

c) Xét hai tam giác vuông \(OAK\) và \(BOK\) , ta có:

\(\eqalign{
& \widehat {OKA} = \widehat {OKB} = {90^0} \cr 
& \dfrac{{AK}}{{OK}} = {1 \over 2};{{OK} \over {KB}} = {2 \over 4} = {1 \over 2} \cr 
& \Rightarrow {{AK} \over {OK}} = {{OK} \over {KB}} \cr} \) 

Suy ra \(\Delta OAK\) đồng dạng với \(\Delta BOK\)

Suy ra: \(\widehat {KOA} = \widehat {KBO}\)

Mà \(\widehat {KBO} + \widehat {KOB} = {90^0}\) (do tam giác KOB vuông tại K)

Suy ra: \(\widehat {KOB} + \widehat {KOA} = {90^0}\) hay \(\widehat {AOB} = {90^0}\).

Hay hai đường thẳng \(y = -2x\) và \(y = 0,5x\) vuông góc với nhau. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved