SBT TOÁN TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Bài 2.9 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Đề bài

Trong một cuộc thi pha chế, mỗi đợi chơi được sử dụng tối đa 12g hương liệu, 9 lít nước và 315g đường để pha chế hai loại nước A và B. Để pha chết 1 lít nước A cần 45g đường, 1 lít nước và 0,5g hương liệu; để pha chế 1 lít nước B cần 15g đường, 1 lít nước và 2g hương liệu. Mỗi lít nước A nhận được 60 điểm thưởng, mỗi lít nước B nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất?

Phương pháp giải - Xem chi tiết

- Tìm hệ bất phương trình từ bài toán trên

- Viết biểu thức về đội chơi được số điểm thưởng.

-  Vẽ hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)

-  Xác định miền nghiệm của hệ bất phương trình trên.

-  Tìm giá trị lớn nhất của đội chơi được số điểm thưởng.

Lời giải chi tiết

  • Gọi \(x\) và \(y\) lần lượt là số lít nước loại A và B cần pha chế.

Điều kiện: \(x \ge 0,\,\,y \ge 0.\)

Số hương liệu cần dùng để pha chế hai loại lít nước A và B là: \(0,5x + 2y \le 12.\)

Số lít nước cần dùng để pha chế hai loại nước A và B là: \(x + y \le 9.\)

Số g đường cần dùng để pha chế hai loại lít nước A và B là: \(45x + 15y \le 315.\)

Từ đó, ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}.} \right.\)

Số điểm thưởng của đội chơi nhận được là: \(F\left( {x;y} \right) = 60x + 80y \to \max \)

  • Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\)trên cùng mặt phẳng tọa độ \(Oxy.\)

Xác định miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ \(d:x = 0\) chứa điểm \(\left( {1;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \({d_1}:y = 0\) chứa điểm \(\left( {0;1} \right).\)

Xác định miền nghiệm của bất phương trình \(0.5x + 2y \le 12\). Vẽ đường thẳng \({d_2}:0.5x + 2y = 12\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(0,5x + 2y,\) ta được: \(0,5.0 + 2.0 = 0 < 12\) nên miền nghiệm của bất phương trình \(0.5x + 2y \le 12\) là nửa mặt phẳng bờ \({d_2}\) chứa điểm \(O\left( {0;0} \right)\).

Xác định miền nghiệm của bất phương trình \(x + y \le 9\). Vẽ đường thẳng \({d_3}:x + y = 9\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_3}\) và thay vào biểu thức \(x + y,\) ta được: \(0 + 0 = 0 < 9\) nên miền nghiệm của bất phương trình  \(x + y = 9\) là nửa mặt phẳng bờ \({d_3}\) chứa điểm \(O\left( {0;0} \right)\).

Xác định miền nghiệm của bất phương trình \(45x + 15y \le 315\). Vẽ đường thẳng \({d_4}:45x + 15y = 315\) trên mặt phẳng tọa độ \(Oxy.\) Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_4}\) và thay vào biểu thức \(45x + 15y,\) ta được: \(45.0 + 15.0 = 0 < 315\) nên miền nghiệm của bất phương trình \(45x + 15y \le 315\) là nửa mặt phẳng bờ \({d_4}\) chứa điểm \(O\left( {0;0} \right)\).

 

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{0,5x + 2y \le 12}\\{x + y \le 9}\\{45x + 15y \le 315}\end{array}} \right.\)là ngũ giác \(OABCD\) với \(A\left( {0;6} \right),\,\,B\left( {4;5} \right),\,\,C\left( {6;3} \right),\,\,D\left( {7;0} \right)\)

Ta có: \(F\left( {0;6} \right) = 60.0 + 80.6 = 480,\)

 \(F\left( {4;5} \right) = 60.4 + 80.5 = 640,\)

\(F\left( {0;0} \right) = 60.0 + 80.0 = 0,\)

\(F\left( {6;3} \right) = 60.6 + 80.3 = 600,\)

\(F\left( {7;0} \right) = 60.7 + 80.0 = 420.\)

\( \Rightarrow \) giá trị lớn nhất là \(F\left( {4;5} \right) = 640.\)

Vậy vần pha chế 4 lít nước loại A và 5 lít nước loại B thì số điểm thưởng nhận được là lớn nhất.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved