1. Nội dung câu hỏi
Thanh có 4 tấm thẻ được đánh số 1, 3, 4, 7. Thanh lấy ra 3 trong 4 thẻ và xếp chúng thành một hàng ngang một cách ngẫu nhiên để tạo thành 1 số có 3 chữ số. Tính xác suất của biến cố A: “Số tạo thành chia hết cho 2 hoặc 3”
2. Phương pháp giải
Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
3. Lời giải chi tiết
Số các số có 3 chữ số có thể tạo thành từ 4 tấm thẻ là: \(4.3.2 = 24\) (số)
Gọi B là biến cố “Số tạo thành chia hết cho 2”. Khi đó:
Có 1 cách chọn chữ số hàng đơn vị (số 4)
Có 3 cách chọn chữ số hàng trăm, có 2 cách chọn chữ số hàng chục.
Do đó, số các số có 3 chữ số chia hết cho 2 được tạo ra từ 4 tấm thẻ là: \(3.2.1 = 6\) (số)
Suy ra, \(P\left( B \right) = \frac{6}{{24}}\)
Gọi C là biến cố “Số tạo thành chia hết cho 3”. Trong 4 tấm thẻ trên chỉ có 3 tấm thẻ 1; 4; 7 có tổng chia hết cho 3. Do đó, các số chia hết cho 3 được tạo thành từ 3 tấm thẻ ghi số 1; 4; 7.
Khi đó: Có 3 cách chọn chữ số hàng trăm, 2 cách chọn chữ số hàng chục, 1 cách chọn chữ số hàng đơn vị. Do đó, số các số có 3 chữ số chia hết cho 3 được tạo ra từ 4 tấm thẻ là: \(3.2.1 = 6\) (số). Suy ra, \(P\left( C \right) = \frac{6}{{24}}\)
Biến cố BC là biến cố “Số tạo thành chia hết cho 6”. Có 2 kết quả thuận lợi của biến cố BC là: 174; 714. Suy ra, \(P\left( {BC} \right) = \frac{2}{{24}}\)
Vậy xác suất của biến cố A là: \(P\left( A \right) = P\left( B \right) + P\left( C \right) - P\left( {BC} \right) = \frac{6}{{24}} + \frac{6}{{24}} - \frac{2}{{24}} = \frac{5}{{12}}\).
Chuyên đề 1. Trường hấp dẫn
Đề minh họa số 2
Từ vựng
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Ngữ văn lớp 11
Bài 1. Bảo vệ chủ quyền lãnh thổ, biên giới quốc gia nước Cộng hòa xã hội chủ nghĩa Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11