1. Nội dung câu hỏi
Cho phép tịnh tiến \({T_{\vec u}}\) trong đó \(\vec u = \left( {3;5} \right)\)
a) Tìm ảnh của các điểm \(\;A\left( {-3;{\rm{ }}4} \right),{\rm{ }}B\left( {2;{\rm{ }}-7} \right)\;\)qua \({T_{\vec u}}\)
b) Biết rằng M’(2; 6) là ảnh của điểm M qua \({T_{\vec u}}\). Tìm tọa độ của điểm M.
c) Tìm ảnh của đường thẳng \(d:{\rm{ }}4x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}0\) qua \({T_{\vec u}}\).
2. Phương pháp giải
Cho vectơ \(\overrightarrow u \), phép tịnh tiến theo vectơ \(\overrightarrow u \) là phép biến hình biến điểm M thành điểm M’ sao cho \(\overrightarrow {MM'} = \overrightarrow u \).
Nếu \(M'(x';y')\) là ảnh của \(M(x;y)\) qua phép tịnh tiến \({T_{\overrightarrow u }}\) , \(\overrightarrow u = \left( {a;\,b} \right)\) thì biểu thức tọa độ của phép tịnh tiến là \(\left\{ \begin{array}{l}x' = x + a\\y' = y + b\end{array} \right.\)
3. Lời giải chi tiết
a) Đặt \(A'\left( {x';y'} \right) = {T_{\vec u}}\left( A \right)\).
Suy ra \(\overrightarrow {A{A'}} = \vec u\) mà \(\overrightarrow {AA'} = \left( {x' + 3;y' - 4} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 3 = 3}\\{{\rm{y'}} - 4 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 0}\\{{\rm{y'}} = 9}\end{array}} \right.\)
Suy ra tọa độ A’(0; 9).
Đặt \(B'\left( {x'';y''} \right) = {T_{\vec u}}\left( B \right)\).
Suy ra \(\overrightarrow {BB'} = {\rm{\vec u}}\) mà \(\overrightarrow {BB'} = \left( {x'' - 2\;;\;{\rm{y''}} + 7} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} - 2 = 3}\\{{\rm{y''}} + 7 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x''}} = 5}\\{{\rm{y''}} = - 2}\end{array}} \right.\)
Suy ra tọa độ B’(5; –2).
Vậy ảnh của các điểm A, B qua \({T_{\vec u}}\) lần lượt là các điểm A’(0; 9), B’(5; –2).
b) Gọi \(M({x_M};{\rm{ }}{y_M}).\)
Theo đề, ta có \(M' = {T_{\vec u}}\left( M \right)\).
Suy ra \(\overrightarrow {MM'} = {\rm{\vec u}}\), mà \(\overrightarrow {MM'} = \left( {2 - {{\rm{x}}_{\rm{M}}}\;;\;6 - {{\rm{y}}_{\rm{M}}}} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{2 - {{\rm{x}}_{\rm{M}}} = 3}\\{6 - {{\rm{y}}_{\rm{M}}} = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{{\rm{x}}_{\rm{M}}} = - 1}\\{{{\rm{y}}_{\rm{M}}} = 1}\end{array}} \right.\)
Vậy tọa độ M(–1; 1) thỏa mãn yêu cầu bài toán.
c) Chọn điểm \(N\left( {-1;{\rm{ }}1} \right) \in d:{\rm{ }}4x-3y + 7 = 0.\)
Gọi \(N'\left( {x';{\rm{ }}y'} \right)\) lần lượt là ảnh của N qua \({T_{\vec u}}\)
Ta có \({T_{\vec u}}\left( N \right) = N'\), suy ra \(\overrightarrow {N{N'}} = \vec u\) với \(\overrightarrow {NN'} = \left( {x' + 1;y' - 1} \right)\)
Do đó \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} + 1 = 3}\\{{\rm{y'}} - 1 = 5}\end{array}} \right.\)
Vì vậy \(\left\{ {\begin{array}{*{20}{l}}{{\rm{x'}} = 2}\\{{\rm{y'}} = 6}\end{array}} \right.\)
Suy ra tọa độ N’(2; 6).
Đường thẳng \(d:{\rm{ }}4x-3y + 7 = 0\) có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\).
Gọi d’ là ảnh của d qua \({T_{\vec u}}\) do đó d’ song song hoặc trùng với d nên d’ nhận \({\vec n_d} = \left( {4; - 3} \right)\) làm vectơ pháp tuyến.
Ta có d’ là đường thẳng đi qua \(M'\left( {2;{\rm{ }}6} \right)\) và có vectơ pháp tuyến \({\vec n_d} = \left( {4; - 3} \right)\) nên có phương trình là:
\(4\left( {x-2} \right)-3\left( {y-6} \right) = 0 \Leftrightarrow 4x-3y + 10 = 0.\)
Vậy ảnh của đường thẳng \(d:4x-3y + 7 = 0\) qua \({T_{\vec u}}\) là đường thẳng \(d':4x-3y + 10 = 0.\)
Chương II. Vật liệu cơ khí
Các bài văn mẫu về Nghị luận xã hội lớp 11
Chương I. Giới thiệu chung về cơ khí chế tạo
Chương III. Điện trường
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11