1. Nội dung câu hỏi
Rút gọn các biểu thức sau:
a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x\);
b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}}\);
c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}}\);
d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y\).
2. Phương pháp giải
Sử dụng kiến thức về các công thức lượng giác để rút gọn:
a) \(\sin 2\alpha = 2\sin \alpha \cos \alpha \), \({\cos ^2}\alpha - {\sin ^2}\alpha = \cos 2\alpha \)
b) \(\sin \alpha \cos \beta = \frac{1}{2}\left[ {\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)} \right]\)
c) \(\cos \alpha + \cos \beta = 2\cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\), \(\sin \alpha + \sin \beta = 2\sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\)
d) \(\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \), \(\cos \alpha + \cos \beta = 2\cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\)
3. Lời giải chi tiết
a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x \) \( = \sin x\cos x\left( {{{\cos }^4}x - {{\sin }^4}x} \right)\)
\( \) \( = \sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {{{\cos }^2}x + {{\sin }^2}x} \right) \) \( = \frac{1}{2}\sin 2x\cos 2x \) \( = \frac{1}{4}\sin 4x\)
b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}} \) \( = \frac{{\frac{1}{2}\left( {\sin 5x + \sin x} \right) + \frac{1}{2}\left( {\sin 7x - \sin 5x} \right)}}{{\sin 4x}}\)
\( \) \( = \frac{{\sin x + \sin 7x}}{{2\sin 4x}} \) \( = \frac{{2\sin 4x\cos 3x}}{{2\sin 4x}} \) \( = \cos 3x\)
c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}} \) \( = \frac{{\left( {\cos x + \cos 3x} \right) - \cos 2x}}{{\left( {\sin x + \sin 3x} \right) - \sin 2x}} \) \( = \frac{{2\cos 2x\cos x - \cos 2x}}{{2\sin 2x\cos x - \sin 2x}}\)
\( \) \( = \frac{{\cos 2x\left( {2\cos x - 1} \right)}}{{\sin 2x\left( {2\cos x - 1} \right)}} \) \( = \cot 2x\)
d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y \) \( = \frac{{2\left( {\sin x\cos y + \cos x\sin y} \right)}}{{2\cos x\cos y}} - \frac{{\sin y}}{{\cos y}}\)
\( \) \( = \frac{{2\sin x\cos y + 2\cos x\sin y - 2\cos x\sin y}}{{2\cos x\cos y}} \) \( = \frac{{2\sin x\cos y}}{{2\cos x\cos y}} \) \( = \tan x\).
Chương II. Sóng
Review 2 (Units 4-5)
Bài 7: Tiết 1: EU - Liên minh khu vực lớn trên thế giới - Tập bản đồ Địa lí 11
Unit 5: Cities and Education in the future
Bài 6: Sulfur và sulfur dioxide
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11