SBT Toán 11 - Chân trời sáng tạo tập 1

Câu hỏi 3 - Mục Bài tập trang 19

1. Nội dung câu hỏi

Rút gọn các biểu thức sau:

a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x\);

b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}}\);

c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}}\);

d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y\).


2. Phương pháp giải

Sử dụng kiến thức về các công thức lượng giác để rút gọn:

a) \(\sin 2\alpha  = 2\sin \alpha \cos \alpha \), \({\cos ^2}\alpha  - {\sin ^2}\alpha  = \cos 2\alpha \)

b) \(\sin \alpha \cos \beta  = \frac{1}{2}\left[ {\sin \left( {\alpha  - \beta } \right) + \sin \left( {\alpha  + \beta } \right)} \right]\)

c) \(\cos \alpha  + \cos \beta  = 2\cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\), \(\sin \alpha  + \sin \beta  = 2\sin \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\)

d) \(\sin \left( {\alpha  + \beta } \right) = \sin \alpha \cos \beta  + \cos \alpha \sin \beta \), \(\cos \alpha  + \cos \beta  = 2\cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\)

 

3. Lời giải chi tiết 

a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x \) \( = \sin x\cos x\left( {{{\cos }^4}x - {{\sin }^4}x} \right)\)

\( \) \( = \sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {{{\cos }^2}x + {{\sin }^2}x} \right) \) \( = \frac{1}{2}\sin 2x\cos 2x \) \( = \frac{1}{4}\sin 4x\)

b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}} \) \( = \frac{{\frac{1}{2}\left( {\sin 5x + \sin x} \right) + \frac{1}{2}\left( {\sin 7x - \sin 5x} \right)}}{{\sin 4x}}\)

\( \) \( = \frac{{\sin x + \sin 7x}}{{2\sin 4x}} \) \( = \frac{{2\sin 4x\cos 3x}}{{2\sin 4x}} \) \( = \cos 3x\)

c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}} \) \( = \frac{{\left( {\cos x + \cos 3x} \right) - \cos 2x}}{{\left( {\sin x + \sin 3x} \right) - \sin 2x}} \) \( = \frac{{2\cos 2x\cos x - \cos 2x}}{{2\sin 2x\cos x - \sin 2x}}\)

\( \) \( = \frac{{\cos 2x\left( {2\cos x - 1} \right)}}{{\sin 2x\left( {2\cos x - 1} \right)}} \) \( = \cot 2x\)

d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y \) \( = \frac{{2\left( {\sin x\cos y + \cos x\sin y} \right)}}{{2\cos x\cos y}} - \frac{{\sin y}}{{\cos y}}\)

\( \) \( = \frac{{2\sin x\cos y + 2\cos x\sin y - 2\cos x\sin y}}{{2\cos x\cos y}} \) \( = \frac{{2\sin x\cos y}}{{2\cos x\cos y}} \) \( = \tan x\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved